This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a positive number A , construct a new positive number less than both A and 1. (Contributed by NM, 28-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recreclt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 1 ∧ ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recgt0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) | |
| 2 | gt0ne0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) | |
| 3 | rereccl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) | |
| 4 | 2 3 | syldan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 5 | 1re | ⊢ 1 ∈ ℝ | |
| 6 | ltaddpos | ⊢ ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( 0 < ( 1 / 𝐴 ) ↔ 1 < ( 1 + ( 1 / 𝐴 ) ) ) ) | |
| 7 | 4 5 6 | sylancl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 < ( 1 / 𝐴 ) ↔ 1 < ( 1 + ( 1 / 𝐴 ) ) ) ) |
| 8 | 1 7 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 1 < ( 1 + ( 1 / 𝐴 ) ) ) |
| 9 | readdcl | ⊢ ( ( 1 ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ ) | |
| 10 | 5 4 9 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ ) |
| 11 | 0lt1 | ⊢ 0 < 1 | |
| 12 | 0re | ⊢ 0 ∈ ℝ | |
| 13 | lttr | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < ( 1 + ( 1 / 𝐴 ) ) ) → 0 < ( 1 + ( 1 / 𝐴 ) ) ) ) | |
| 14 | 12 5 10 13 | mp3an12i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 0 < 1 ∧ 1 < ( 1 + ( 1 / 𝐴 ) ) ) → 0 < ( 1 + ( 1 / 𝐴 ) ) ) ) |
| 15 | 11 14 | mpani | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < ( 1 + ( 1 / 𝐴 ) ) → 0 < ( 1 + ( 1 / 𝐴 ) ) ) ) |
| 16 | 8 15 | mpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 + ( 1 / 𝐴 ) ) ) |
| 17 | recgt1 | ⊢ ( ( ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ ∧ 0 < ( 1 + ( 1 / 𝐴 ) ) ) → ( 1 < ( 1 + ( 1 / 𝐴 ) ) ↔ ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 1 ) ) | |
| 18 | 10 16 17 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < ( 1 + ( 1 / 𝐴 ) ) ↔ ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 1 ) ) |
| 19 | 8 18 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 1 ) |
| 20 | ltaddpos | ⊢ ( ( 1 ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( 0 < 1 ↔ ( 1 / 𝐴 ) < ( ( 1 / 𝐴 ) + 1 ) ) ) | |
| 21 | 5 4 20 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 < 1 ↔ ( 1 / 𝐴 ) < ( ( 1 / 𝐴 ) + 1 ) ) ) |
| 22 | 11 21 | mpbii | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) < ( ( 1 / 𝐴 ) + 1 ) ) |
| 23 | 4 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
| 24 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 25 | addcom | ⊢ ( ( ( 1 / 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 1 / 𝐴 ) + 1 ) = ( 1 + ( 1 / 𝐴 ) ) ) | |
| 26 | 23 24 25 | sylancl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) + 1 ) = ( 1 + ( 1 / 𝐴 ) ) ) |
| 27 | 22 26 | breqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) < ( 1 + ( 1 / 𝐴 ) ) ) |
| 28 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 29 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < 𝐴 ) | |
| 30 | ltrec1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ ∧ 0 < ( 1 + ( 1 / 𝐴 ) ) ) ) → ( ( 1 / 𝐴 ) < ( 1 + ( 1 / 𝐴 ) ) ↔ ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 𝐴 ) ) | |
| 31 | 28 29 10 16 30 | syl22anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) < ( 1 + ( 1 / 𝐴 ) ) ↔ ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 𝐴 ) ) |
| 32 | 27 31 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 𝐴 ) |
| 33 | 19 32 | jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 1 ∧ ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 𝐴 ) ) |