This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a positive number A , construct a new positive number less than both A and 1. (Contributed by NM, 28-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recreclt | |- ( ( A e. RR /\ 0 < A ) -> ( ( 1 / ( 1 + ( 1 / A ) ) ) < 1 /\ ( 1 / ( 1 + ( 1 / A ) ) ) < A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recgt0 | |- ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) ) |
|
| 2 | gt0ne0 | |- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
|
| 3 | rereccl | |- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / A ) e. RR ) |
|
| 4 | 2 3 | syldan | |- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. RR ) |
| 5 | 1re | |- 1 e. RR |
|
| 6 | ltaddpos | |- ( ( ( 1 / A ) e. RR /\ 1 e. RR ) -> ( 0 < ( 1 / A ) <-> 1 < ( 1 + ( 1 / A ) ) ) ) |
|
| 7 | 4 5 6 | sylancl | |- ( ( A e. RR /\ 0 < A ) -> ( 0 < ( 1 / A ) <-> 1 < ( 1 + ( 1 / A ) ) ) ) |
| 8 | 1 7 | mpbid | |- ( ( A e. RR /\ 0 < A ) -> 1 < ( 1 + ( 1 / A ) ) ) |
| 9 | readdcl | |- ( ( 1 e. RR /\ ( 1 / A ) e. RR ) -> ( 1 + ( 1 / A ) ) e. RR ) |
|
| 10 | 5 4 9 | sylancr | |- ( ( A e. RR /\ 0 < A ) -> ( 1 + ( 1 / A ) ) e. RR ) |
| 11 | 0lt1 | |- 0 < 1 |
|
| 12 | 0re | |- 0 e. RR |
|
| 13 | lttr | |- ( ( 0 e. RR /\ 1 e. RR /\ ( 1 + ( 1 / A ) ) e. RR ) -> ( ( 0 < 1 /\ 1 < ( 1 + ( 1 / A ) ) ) -> 0 < ( 1 + ( 1 / A ) ) ) ) |
|
| 14 | 12 5 10 13 | mp3an12i | |- ( ( A e. RR /\ 0 < A ) -> ( ( 0 < 1 /\ 1 < ( 1 + ( 1 / A ) ) ) -> 0 < ( 1 + ( 1 / A ) ) ) ) |
| 15 | 11 14 | mpani | |- ( ( A e. RR /\ 0 < A ) -> ( 1 < ( 1 + ( 1 / A ) ) -> 0 < ( 1 + ( 1 / A ) ) ) ) |
| 16 | 8 15 | mpd | |- ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 + ( 1 / A ) ) ) |
| 17 | recgt1 | |- ( ( ( 1 + ( 1 / A ) ) e. RR /\ 0 < ( 1 + ( 1 / A ) ) ) -> ( 1 < ( 1 + ( 1 / A ) ) <-> ( 1 / ( 1 + ( 1 / A ) ) ) < 1 ) ) |
|
| 18 | 10 16 17 | syl2anc | |- ( ( A e. RR /\ 0 < A ) -> ( 1 < ( 1 + ( 1 / A ) ) <-> ( 1 / ( 1 + ( 1 / A ) ) ) < 1 ) ) |
| 19 | 8 18 | mpbid | |- ( ( A e. RR /\ 0 < A ) -> ( 1 / ( 1 + ( 1 / A ) ) ) < 1 ) |
| 20 | ltaddpos | |- ( ( 1 e. RR /\ ( 1 / A ) e. RR ) -> ( 0 < 1 <-> ( 1 / A ) < ( ( 1 / A ) + 1 ) ) ) |
|
| 21 | 5 4 20 | sylancr | |- ( ( A e. RR /\ 0 < A ) -> ( 0 < 1 <-> ( 1 / A ) < ( ( 1 / A ) + 1 ) ) ) |
| 22 | 11 21 | mpbii | |- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) < ( ( 1 / A ) + 1 ) ) |
| 23 | 4 | recnd | |- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. CC ) |
| 24 | ax-1cn | |- 1 e. CC |
|
| 25 | addcom | |- ( ( ( 1 / A ) e. CC /\ 1 e. CC ) -> ( ( 1 / A ) + 1 ) = ( 1 + ( 1 / A ) ) ) |
|
| 26 | 23 24 25 | sylancl | |- ( ( A e. RR /\ 0 < A ) -> ( ( 1 / A ) + 1 ) = ( 1 + ( 1 / A ) ) ) |
| 27 | 22 26 | breqtrd | |- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) < ( 1 + ( 1 / A ) ) ) |
| 28 | simpl | |- ( ( A e. RR /\ 0 < A ) -> A e. RR ) |
|
| 29 | simpr | |- ( ( A e. RR /\ 0 < A ) -> 0 < A ) |
|
| 30 | ltrec1 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( ( 1 + ( 1 / A ) ) e. RR /\ 0 < ( 1 + ( 1 / A ) ) ) ) -> ( ( 1 / A ) < ( 1 + ( 1 / A ) ) <-> ( 1 / ( 1 + ( 1 / A ) ) ) < A ) ) |
|
| 31 | 28 29 10 16 30 | syl22anc | |- ( ( A e. RR /\ 0 < A ) -> ( ( 1 / A ) < ( 1 + ( 1 / A ) ) <-> ( 1 / ( 1 + ( 1 / A ) ) ) < A ) ) |
| 32 | 27 31 | mpbid | |- ( ( A e. RR /\ 0 < A ) -> ( 1 / ( 1 + ( 1 / A ) ) ) < A ) |
| 33 | 19 32 | jca | |- ( ( A e. RR /\ 0 < A ) -> ( ( 1 / ( 1 + ( 1 / A ) ) ) < 1 /\ ( 1 / ( 1 + ( 1 / A ) ) ) < A ) ) |