This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disconnectedness for a subspace. (Contributed by FL, 29-May-2014) (Proof shortened by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nconnsubb.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| nconnsubb.3 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) | ||
| nconnsubb.4 | ⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) | ||
| nconnsubb.5 | ⊢ ( 𝜑 → 𝑉 ∈ 𝐽 ) | ||
| nconnsubb.6 | ⊢ ( 𝜑 → ( 𝑈 ∩ 𝐴 ) ≠ ∅ ) | ||
| nconnsubb.7 | ⊢ ( 𝜑 → ( 𝑉 ∩ 𝐴 ) ≠ ∅ ) | ||
| nconnsubb.8 | ⊢ ( 𝜑 → ( ( 𝑈 ∩ 𝑉 ) ∩ 𝐴 ) = ∅ ) | ||
| nconnsubb.9 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑈 ∪ 𝑉 ) ) | ||
| Assertion | nconnsubb | ⊢ ( 𝜑 → ¬ ( 𝐽 ↾t 𝐴 ) ∈ Conn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nconnsubb.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | nconnsubb.3 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) | |
| 3 | nconnsubb.4 | ⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) | |
| 4 | nconnsubb.5 | ⊢ ( 𝜑 → 𝑉 ∈ 𝐽 ) | |
| 5 | nconnsubb.6 | ⊢ ( 𝜑 → ( 𝑈 ∩ 𝐴 ) ≠ ∅ ) | |
| 6 | nconnsubb.7 | ⊢ ( 𝜑 → ( 𝑉 ∩ 𝐴 ) ≠ ∅ ) | |
| 7 | nconnsubb.8 | ⊢ ( 𝜑 → ( ( 𝑈 ∩ 𝑉 ) ∩ 𝐴 ) = ∅ ) | |
| 8 | nconnsubb.9 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑈 ∪ 𝑉 ) ) | |
| 9 | connsuba | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) → ( ( 𝑥 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ) ) ) | |
| 10 | 1 2 9 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) → ( ( 𝑥 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ) ) ) |
| 11 | 5 6 7 | 3jca | ⊢ ( 𝜑 → ( ( 𝑈 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑉 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑈 ∩ 𝑉 ) ∩ 𝐴 ) = ∅ ) ) |
| 12 | ineq1 | ⊢ ( 𝑥 = 𝑈 → ( 𝑥 ∩ 𝐴 ) = ( 𝑈 ∩ 𝐴 ) ) | |
| 13 | 12 | neeq1d | ⊢ ( 𝑥 = 𝑈 → ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ ↔ ( 𝑈 ∩ 𝐴 ) ≠ ∅ ) ) |
| 14 | ineq1 | ⊢ ( 𝑥 = 𝑈 → ( 𝑥 ∩ 𝑦 ) = ( 𝑈 ∩ 𝑦 ) ) | |
| 15 | 14 | ineq1d | ⊢ ( 𝑥 = 𝑈 → ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ( ( 𝑈 ∩ 𝑦 ) ∩ 𝐴 ) ) |
| 16 | 15 | eqeq1d | ⊢ ( 𝑥 = 𝑈 → ( ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ↔ ( ( 𝑈 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) ) |
| 17 | 13 16 | 3anbi13d | ⊢ ( 𝑥 = 𝑈 → ( ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) ↔ ( ( 𝑈 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑈 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) ) ) |
| 18 | uneq1 | ⊢ ( 𝑥 = 𝑈 → ( 𝑥 ∪ 𝑦 ) = ( 𝑈 ∪ 𝑦 ) ) | |
| 19 | 18 | ineq1d | ⊢ ( 𝑥 = 𝑈 → ( ( 𝑥 ∪ 𝑦 ) ∩ 𝐴 ) = ( ( 𝑈 ∪ 𝑦 ) ∩ 𝐴 ) ) |
| 20 | 19 | neeq1d | ⊢ ( 𝑥 = 𝑈 → ( ( ( 𝑥 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ↔ ( ( 𝑈 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ) ) |
| 21 | 17 20 | imbi12d | ⊢ ( 𝑥 = 𝑈 → ( ( ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) → ( ( 𝑥 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ) ↔ ( ( ( 𝑈 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑈 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) → ( ( 𝑈 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ) ) ) |
| 22 | ineq1 | ⊢ ( 𝑦 = 𝑉 → ( 𝑦 ∩ 𝐴 ) = ( 𝑉 ∩ 𝐴 ) ) | |
| 23 | 22 | neeq1d | ⊢ ( 𝑦 = 𝑉 → ( ( 𝑦 ∩ 𝐴 ) ≠ ∅ ↔ ( 𝑉 ∩ 𝐴 ) ≠ ∅ ) ) |
| 24 | ineq2 | ⊢ ( 𝑦 = 𝑉 → ( 𝑈 ∩ 𝑦 ) = ( 𝑈 ∩ 𝑉 ) ) | |
| 25 | 24 | ineq1d | ⊢ ( 𝑦 = 𝑉 → ( ( 𝑈 ∩ 𝑦 ) ∩ 𝐴 ) = ( ( 𝑈 ∩ 𝑉 ) ∩ 𝐴 ) ) |
| 26 | 25 | eqeq1d | ⊢ ( 𝑦 = 𝑉 → ( ( ( 𝑈 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ↔ ( ( 𝑈 ∩ 𝑉 ) ∩ 𝐴 ) = ∅ ) ) |
| 27 | 23 26 | 3anbi23d | ⊢ ( 𝑦 = 𝑉 → ( ( ( 𝑈 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑈 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) ↔ ( ( 𝑈 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑉 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑈 ∩ 𝑉 ) ∩ 𝐴 ) = ∅ ) ) ) |
| 28 | sseqin2 | ⊢ ( 𝐴 ⊆ ( 𝑈 ∪ 𝑦 ) ↔ ( ( 𝑈 ∪ 𝑦 ) ∩ 𝐴 ) = 𝐴 ) | |
| 29 | 28 | necon3bbii | ⊢ ( ¬ 𝐴 ⊆ ( 𝑈 ∪ 𝑦 ) ↔ ( ( 𝑈 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ) |
| 30 | uneq2 | ⊢ ( 𝑦 = 𝑉 → ( 𝑈 ∪ 𝑦 ) = ( 𝑈 ∪ 𝑉 ) ) | |
| 31 | 30 | sseq2d | ⊢ ( 𝑦 = 𝑉 → ( 𝐴 ⊆ ( 𝑈 ∪ 𝑦 ) ↔ 𝐴 ⊆ ( 𝑈 ∪ 𝑉 ) ) ) |
| 32 | 31 | notbid | ⊢ ( 𝑦 = 𝑉 → ( ¬ 𝐴 ⊆ ( 𝑈 ∪ 𝑦 ) ↔ ¬ 𝐴 ⊆ ( 𝑈 ∪ 𝑉 ) ) ) |
| 33 | 29 32 | bitr3id | ⊢ ( 𝑦 = 𝑉 → ( ( ( 𝑈 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ↔ ¬ 𝐴 ⊆ ( 𝑈 ∪ 𝑉 ) ) ) |
| 34 | 27 33 | imbi12d | ⊢ ( 𝑦 = 𝑉 → ( ( ( ( 𝑈 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑈 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) → ( ( 𝑈 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ) ↔ ( ( ( 𝑈 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑉 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑈 ∩ 𝑉 ) ∩ 𝐴 ) = ∅ ) → ¬ 𝐴 ⊆ ( 𝑈 ∪ 𝑉 ) ) ) ) |
| 35 | 21 34 | rspc2v | ⊢ ( ( 𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽 ) → ( ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) → ( ( 𝑥 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ) → ( ( ( 𝑈 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑉 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑈 ∩ 𝑉 ) ∩ 𝐴 ) = ∅ ) → ¬ 𝐴 ⊆ ( 𝑈 ∪ 𝑉 ) ) ) ) |
| 36 | 3 4 35 | syl2anc | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) → ( ( 𝑥 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ) → ( ( ( 𝑈 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑉 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑈 ∩ 𝑉 ) ∩ 𝐴 ) = ∅ ) → ¬ 𝐴 ⊆ ( 𝑈 ∪ 𝑉 ) ) ) ) |
| 37 | 11 36 | mpid | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ∧ ( ( 𝑥 ∩ 𝑦 ) ∩ 𝐴 ) = ∅ ) → ( ( 𝑥 ∪ 𝑦 ) ∩ 𝐴 ) ≠ 𝐴 ) → ¬ 𝐴 ⊆ ( 𝑈 ∪ 𝑉 ) ) ) |
| 38 | 10 37 | sylbid | ⊢ ( 𝜑 → ( ( 𝐽 ↾t 𝐴 ) ∈ Conn → ¬ 𝐴 ⊆ ( 𝑈 ∪ 𝑉 ) ) ) |
| 39 | 8 38 | mt2d | ⊢ ( 𝜑 → ¬ ( 𝐽 ↾t 𝐴 ) ∈ Conn ) |