This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of the reals is connected iff it has the interval property. (Contributed by Jeff Hankins, 15-Jul-2009) (Proof shortened by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reconn | ⊢ ( 𝐴 ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reconnlem1 | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) | |
| 2 | 1 | ralrimivva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) |
| 3 | 2 | ex | ⊢ ( 𝐴 ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ) |
| 4 | n0 | ⊢ ( ( 𝑢 ∩ 𝐴 ) ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ) | |
| 5 | n0 | ⊢ ( ( 𝑣 ∩ 𝐴 ) ≠ ∅ ↔ ∃ 𝑐 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) | |
| 6 | 4 5 | anbi12i | ⊢ ( ( ( 𝑢 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑣 ∩ 𝐴 ) ≠ ∅ ) ↔ ( ∃ 𝑏 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∃ 𝑐 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ) |
| 7 | exdistrv | ⊢ ( ∃ 𝑏 ∃ 𝑐 ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ↔ ( ∃ 𝑏 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∃ 𝑐 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ) | |
| 8 | simplll | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) → 𝐴 ⊆ ℝ ) | |
| 9 | simprll | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) → 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ) | |
| 10 | 9 | elin2d | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) → 𝑏 ∈ 𝐴 ) |
| 11 | 8 10 | sseldd | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) → 𝑏 ∈ ℝ ) |
| 12 | simprlr | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) → 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) | |
| 13 | 12 | elin2d | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) → 𝑐 ∈ 𝐴 ) |
| 14 | 8 13 | sseldd | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) → 𝑐 ∈ ℝ ) |
| 15 | 8 | adantr | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑏 ≤ 𝑐 ) → 𝐴 ⊆ ℝ ) |
| 16 | simplrl | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) → 𝑢 ∈ ( topGen ‘ ran (,) ) ) | |
| 17 | 16 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑏 ≤ 𝑐 ) → 𝑢 ∈ ( topGen ‘ ran (,) ) ) |
| 18 | simplrr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) → 𝑣 ∈ ( topGen ‘ ran (,) ) ) | |
| 19 | 18 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑏 ≤ 𝑐 ) → 𝑣 ∈ ( topGen ‘ ran (,) ) ) |
| 20 | simpllr | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑏 ≤ 𝑐 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) | |
| 21 | 9 | adantr | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑏 ≤ 𝑐 ) → 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ) |
| 22 | 12 | adantr | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑏 ≤ 𝑐 ) → 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) |
| 23 | simplrr | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑏 ≤ 𝑐 ) → ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) | |
| 24 | simpr | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑏 ≤ 𝑐 ) → 𝑏 ≤ 𝑐 ) | |
| 25 | eqid | ⊢ sup ( ( 𝑢 ∩ ( 𝑏 [,] 𝑐 ) ) , ℝ , < ) = sup ( ( 𝑢 ∩ ( 𝑏 [,] 𝑐 ) ) , ℝ , < ) | |
| 26 | 15 17 19 20 21 22 23 24 25 | reconnlem2 | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑏 ≤ 𝑐 ) → ¬ 𝐴 ⊆ ( 𝑢 ∪ 𝑣 ) ) |
| 27 | 8 | adantr | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑐 ≤ 𝑏 ) → 𝐴 ⊆ ℝ ) |
| 28 | 18 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑐 ≤ 𝑏 ) → 𝑣 ∈ ( topGen ‘ ran (,) ) ) |
| 29 | 16 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑐 ≤ 𝑏 ) → 𝑢 ∈ ( topGen ‘ ran (,) ) ) |
| 30 | simpllr | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑐 ≤ 𝑏 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) | |
| 31 | 12 | adantr | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑐 ≤ 𝑏 ) → 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) |
| 32 | 9 | adantr | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑐 ≤ 𝑏 ) → 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ) |
| 33 | incom | ⊢ ( 𝑣 ∩ 𝑢 ) = ( 𝑢 ∩ 𝑣 ) | |
| 34 | simplrr | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑐 ≤ 𝑏 ) → ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) | |
| 35 | 33 34 | eqsstrid | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑐 ≤ 𝑏 ) → ( 𝑣 ∩ 𝑢 ) ⊆ ( ℝ ∖ 𝐴 ) ) |
| 36 | simpr | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑐 ≤ 𝑏 ) → 𝑐 ≤ 𝑏 ) | |
| 37 | eqid | ⊢ sup ( ( 𝑣 ∩ ( 𝑐 [,] 𝑏 ) ) , ℝ , < ) = sup ( ( 𝑣 ∩ ( 𝑐 [,] 𝑏 ) ) , ℝ , < ) | |
| 38 | 27 28 29 30 31 32 35 36 37 | reconnlem2 | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑐 ≤ 𝑏 ) → ¬ 𝐴 ⊆ ( 𝑣 ∪ 𝑢 ) ) |
| 39 | uncom | ⊢ ( 𝑣 ∪ 𝑢 ) = ( 𝑢 ∪ 𝑣 ) | |
| 40 | 39 | sseq2i | ⊢ ( 𝐴 ⊆ ( 𝑣 ∪ 𝑢 ) ↔ 𝐴 ⊆ ( 𝑢 ∪ 𝑣 ) ) |
| 41 | 38 40 | sylnib | ⊢ ( ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) ∧ 𝑐 ≤ 𝑏 ) → ¬ 𝐴 ⊆ ( 𝑢 ∪ 𝑣 ) ) |
| 42 | 11 14 26 41 | lecasei | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ∧ ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) ) → ¬ 𝐴 ⊆ ( 𝑢 ∪ 𝑣 ) ) |
| 43 | 42 | exp32 | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) → ( ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) → ( ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) → ¬ 𝐴 ⊆ ( 𝑢 ∪ 𝑣 ) ) ) ) |
| 44 | 43 | exlimdvv | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) → ( ∃ 𝑏 ∃ 𝑐 ( 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) → ( ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) → ¬ 𝐴 ⊆ ( 𝑢 ∪ 𝑣 ) ) ) ) |
| 45 | 7 44 | biimtrrid | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) → ( ( ∃ 𝑏 𝑏 ∈ ( 𝑢 ∩ 𝐴 ) ∧ ∃ 𝑐 𝑐 ∈ ( 𝑣 ∩ 𝐴 ) ) → ( ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) → ¬ 𝐴 ⊆ ( 𝑢 ∪ 𝑣 ) ) ) ) |
| 46 | 6 45 | biimtrid | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) → ( ( ( 𝑢 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑣 ∩ 𝐴 ) ≠ ∅ ) → ( ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) → ¬ 𝐴 ⊆ ( 𝑢 ∪ 𝑣 ) ) ) ) |
| 47 | 46 | expd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) → ( ( 𝑢 ∩ 𝐴 ) ≠ ∅ → ( ( 𝑣 ∩ 𝐴 ) ≠ ∅ → ( ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) → ¬ 𝐴 ⊆ ( 𝑢 ∪ 𝑣 ) ) ) ) ) |
| 48 | 47 | 3impd | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) → ( ( ( 𝑢 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑣 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) → ¬ 𝐴 ⊆ ( 𝑢 ∪ 𝑣 ) ) ) |
| 49 | 48 | ex | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑢 ∈ ( topGen ‘ ran (,) ) ∧ 𝑣 ∈ ( topGen ‘ ran (,) ) ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 → ( ( ( 𝑢 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑣 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) → ¬ 𝐴 ⊆ ( 𝑢 ∪ 𝑣 ) ) ) ) |
| 50 | 49 | ralrimdvva | ⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 → ∀ 𝑢 ∈ ( topGen ‘ ran (,) ) ∀ 𝑣 ∈ ( topGen ‘ ran (,) ) ( ( ( 𝑢 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑣 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) → ¬ 𝐴 ⊆ ( 𝑢 ∪ 𝑣 ) ) ) ) |
| 51 | retopon | ⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) | |
| 52 | connsub | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ 𝐴 ⊆ ℝ ) → ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ↔ ∀ 𝑢 ∈ ( topGen ‘ ran (,) ) ∀ 𝑣 ∈ ( topGen ‘ ran (,) ) ( ( ( 𝑢 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑣 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) → ¬ 𝐴 ⊆ ( 𝑢 ∪ 𝑣 ) ) ) ) | |
| 53 | 51 52 | mpan | ⊢ ( 𝐴 ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ↔ ∀ 𝑢 ∈ ( topGen ‘ ran (,) ) ∀ 𝑣 ∈ ( topGen ‘ ran (,) ) ( ( ( 𝑢 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑣 ∩ 𝐴 ) ≠ ∅ ∧ ( 𝑢 ∩ 𝑣 ) ⊆ ( ℝ ∖ 𝐴 ) ) → ¬ 𝐴 ⊆ ( 𝑢 ∪ 𝑣 ) ) ) ) |
| 54 | 50 53 | sylibrd | ⊢ ( 𝐴 ⊆ ℝ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 → ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ) |
| 55 | 3 54 | impbid | ⊢ ( 𝐴 ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ) |