This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of rankr1a that is suitable without assuming Regularity or Replacement. (Contributed by Mario Carneiro, 3-Jun-2013) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankr1ag | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` B ) <-> ( rank ` A ) e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankr1ai | |- ( A e. ( R1 ` B ) -> ( rank ` A ) e. B ) |
|
| 2 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 3 | 2 | simpri | |- Lim dom R1 |
| 4 | limord | |- ( Lim dom R1 -> Ord dom R1 ) |
|
| 5 | 3 4 | ax-mp | |- Ord dom R1 |
| 6 | ordelord | |- ( ( Ord dom R1 /\ B e. dom R1 ) -> Ord B ) |
|
| 7 | 5 6 | mpan | |- ( B e. dom R1 -> Ord B ) |
| 8 | 7 | adantl | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> Ord B ) |
| 9 | ordsucss | |- ( Ord B -> ( ( rank ` A ) e. B -> suc ( rank ` A ) C_ B ) ) |
|
| 10 | 8 9 | syl | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( rank ` A ) e. B -> suc ( rank ` A ) C_ B ) ) |
| 11 | rankidb | |- ( A e. U. ( R1 " On ) -> A e. ( R1 ` suc ( rank ` A ) ) ) |
|
| 12 | elfvdm | |- ( A e. ( R1 ` suc ( rank ` A ) ) -> suc ( rank ` A ) e. dom R1 ) |
|
| 13 | 11 12 | syl | |- ( A e. U. ( R1 " On ) -> suc ( rank ` A ) e. dom R1 ) |
| 14 | r1ord3g | |- ( ( suc ( rank ` A ) e. dom R1 /\ B e. dom R1 ) -> ( suc ( rank ` A ) C_ B -> ( R1 ` suc ( rank ` A ) ) C_ ( R1 ` B ) ) ) |
|
| 15 | 13 14 | sylan | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( suc ( rank ` A ) C_ B -> ( R1 ` suc ( rank ` A ) ) C_ ( R1 ` B ) ) ) |
| 16 | 11 | adantr | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> A e. ( R1 ` suc ( rank ` A ) ) ) |
| 17 | ssel | |- ( ( R1 ` suc ( rank ` A ) ) C_ ( R1 ` B ) -> ( A e. ( R1 ` suc ( rank ` A ) ) -> A e. ( R1 ` B ) ) ) |
|
| 18 | 16 17 | syl5com | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( R1 ` suc ( rank ` A ) ) C_ ( R1 ` B ) -> A e. ( R1 ` B ) ) ) |
| 19 | 10 15 18 | 3syld | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( ( rank ` A ) e. B -> A e. ( R1 ` B ) ) ) |
| 20 | 1 19 | impbid2 | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` B ) <-> ( rank ` A ) e. B ) ) |