This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between rank and R1 , clearly equivalent to ssrankr1 and friends through trichotomy, but in Raph's opinion considerably more intuitive. See rankr1b for the subset version. (Contributed by Raph Levien, 29-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rankid.1 | ⊢ 𝐴 ∈ V | |
| Assertion | rankr1a | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankid.1 | ⊢ 𝐴 ∈ V | |
| 2 | 1 | ssrankr1 | ⊢ ( 𝐵 ∈ On → ( 𝐵 ⊆ ( rank ‘ 𝐴 ) ↔ ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 3 | rankon | ⊢ ( rank ‘ 𝐴 ) ∈ On | |
| 4 | ontri1 | ⊢ ( ( 𝐵 ∈ On ∧ ( rank ‘ 𝐴 ) ∈ On ) → ( 𝐵 ⊆ ( rank ‘ 𝐴 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝐵 ∈ On → ( 𝐵 ⊆ ( rank ‘ 𝐴 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 6 | 2 5 | bitr3d | ⊢ ( 𝐵 ∈ On → ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 7 | 6 | con4bid | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |