This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between rank and R1 . See rankr1ag for the membership version. (Contributed by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankr1bg | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 2 | 1 | simpri | ⊢ Lim dom 𝑅1 |
| 3 | limsuc | ⊢ ( Lim dom 𝑅1 → ( 𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1 ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( 𝐵 ∈ dom 𝑅1 ↔ suc 𝐵 ∈ dom 𝑅1 ) |
| 5 | rankr1ag | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ suc 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) | |
| 6 | 4 5 | sylan2b | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) |
| 7 | r1sucg | ⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝐵 ) = 𝒫 ( 𝑅1 ‘ 𝐵 ) ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝑅1 ‘ suc 𝐵 ) = 𝒫 ( 𝑅1 ‘ 𝐵 ) ) |
| 9 | 8 | eleq2d | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝐵 ) ) ) |
| 10 | fvex | ⊢ ( 𝑅1 ‘ 𝐵 ) ∈ V | |
| 11 | 10 | elpw2 | ⊢ ( 𝐴 ∈ 𝒫 ( 𝑅1 ‘ 𝐵 ) ↔ 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ) |
| 12 | 9 11 | bitr2di | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |
| 13 | rankon | ⊢ ( rank ‘ 𝐴 ) ∈ On | |
| 14 | limord | ⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) | |
| 15 | 2 14 | ax-mp | ⊢ Ord dom 𝑅1 |
| 16 | ordelon | ⊢ ( ( Ord dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1 ) → 𝐵 ∈ On ) | |
| 17 | 15 16 | mpan | ⊢ ( 𝐵 ∈ dom 𝑅1 → 𝐵 ∈ On ) |
| 18 | 17 | adantl | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → 𝐵 ∈ On ) |
| 19 | onsssuc | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ On ∧ 𝐵 ∈ On ) → ( ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) | |
| 20 | 13 18 19 | sylancr | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) |
| 21 | 6 12 20 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) ) |