This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015) (Proof shortened by AV, 3-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | quscrng.u | ⊢ 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) | |
| quscrng.i | ⊢ 𝐼 = ( LIdeal ‘ 𝑅 ) | ||
| Assertion | quscrng | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → 𝑈 ∈ CRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quscrng.u | ⊢ 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) | |
| 2 | quscrng.i | ⊢ 𝐼 = ( LIdeal ‘ 𝑅 ) | |
| 3 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 4 | simpr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ∈ 𝐼 ) | |
| 5 | 2 | crng2idl | ⊢ ( 𝑅 ∈ CRing → 𝐼 = ( 2Ideal ‘ 𝑅 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → 𝐼 = ( 2Ideal ‘ 𝑅 ) ) |
| 7 | 4 6 | eleqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 8 | eqid | ⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) | |
| 9 | 1 8 | qusring | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ) → 𝑈 ∈ Ring ) |
| 10 | 3 7 9 | syl2an2r | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → 𝑈 ∈ Ring ) |
| 11 | 1 | a1i | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) ) |
| 12 | eqidd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) | |
| 13 | ovexd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → ( 𝑅 ~QG 𝑆 ) ∈ V ) | |
| 14 | 3 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 15 | 11 12 13 14 | qusbas | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑆 ) ) = ( Base ‘ 𝑈 ) ) |
| 16 | 15 | eleq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑆 ) ) ↔ 𝑥 ∈ ( Base ‘ 𝑈 ) ) ) |
| 17 | 15 | eleq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → ( 𝑦 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑆 ) ) ↔ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ) |
| 18 | 16 17 | anbi12d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → ( ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑆 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑆 ) ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ) ) |
| 19 | eqid | ⊢ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑆 ) ) = ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑆 ) ) | |
| 20 | oveq2 | ⊢ ( [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) = 𝑦 → ( 𝑥 ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ) = ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 ) ) | |
| 21 | oveq1 | ⊢ ( [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) = 𝑦 → ( [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) 𝑥 ) = ( 𝑦 ( .r ‘ 𝑈 ) 𝑥 ) ) | |
| 22 | 20 21 | eqeq12d | ⊢ ( [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) = 𝑦 → ( ( 𝑥 ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ) = ( [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) 𝑥 ) ↔ ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑈 ) 𝑥 ) ) ) |
| 23 | oveq1 | ⊢ ( [ 𝑣 ] ( 𝑅 ~QG 𝑆 ) = 𝑥 → ( [ 𝑣 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ) = ( 𝑥 ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ) ) | |
| 24 | oveq2 | ⊢ ( [ 𝑣 ] ( 𝑅 ~QG 𝑆 ) = 𝑥 → ( [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) [ 𝑣 ] ( 𝑅 ~QG 𝑆 ) ) = ( [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) 𝑥 ) ) | |
| 25 | 23 24 | eqeq12d | ⊢ ( [ 𝑣 ] ( 𝑅 ~QG 𝑆 ) = 𝑥 → ( ( [ 𝑣 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ) = ( [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) [ 𝑣 ] ( 𝑅 ~QG 𝑆 ) ) ↔ ( 𝑥 ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ) = ( [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) 𝑥 ) ) ) |
| 26 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 27 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 28 | 26 27 | crngcom | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 ) = ( 𝑣 ( .r ‘ 𝑅 ) 𝑢 ) ) |
| 29 | 28 | ad4ant134 | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 ) = ( 𝑣 ( .r ‘ 𝑅 ) 𝑢 ) ) |
| 30 | 29 | eceq1d | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → [ ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 ) ] ( 𝑅 ~QG 𝑆 ) = [ ( 𝑣 ( .r ‘ 𝑅 ) 𝑢 ) ] ( 𝑅 ~QG 𝑆 ) ) |
| 31 | ringrng | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) | |
| 32 | 3 31 | syl | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Rng ) |
| 33 | 32 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → 𝑅 ∈ Rng ) |
| 34 | 2 | lidlsubg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 35 | 3 34 | sylan | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 36 | 33 7 35 | 3jca | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ) |
| 38 | simpr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ) → 𝑢 ∈ ( Base ‘ 𝑅 ) ) | |
| 39 | 38 | anim1i | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) ) |
| 40 | eqid | ⊢ ( 𝑅 ~QG 𝑆 ) = ( 𝑅 ~QG 𝑆 ) | |
| 41 | eqid | ⊢ ( .r ‘ 𝑈 ) = ( .r ‘ 𝑈 ) | |
| 42 | 40 1 26 27 41 | qusmulrng | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) ) → ( [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) [ 𝑣 ] ( 𝑅 ~QG 𝑆 ) ) = [ ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 ) ] ( 𝑅 ~QG 𝑆 ) ) |
| 43 | 37 39 42 | syl2an2r | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) [ 𝑣 ] ( 𝑅 ~QG 𝑆 ) ) = [ ( 𝑢 ( .r ‘ 𝑅 ) 𝑣 ) ] ( 𝑅 ~QG 𝑆 ) ) |
| 44 | 39 | ancomd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑣 ∈ ( Base ‘ 𝑅 ) ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ) ) |
| 45 | 40 1 26 27 41 | qusmulrng | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑣 ∈ ( Base ‘ 𝑅 ) ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ) ) → ( [ 𝑣 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ) = [ ( 𝑣 ( .r ‘ 𝑅 ) 𝑢 ) ] ( 𝑅 ~QG 𝑆 ) ) |
| 46 | 37 44 45 | syl2an2r | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( [ 𝑣 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ) = [ ( 𝑣 ( .r ‘ 𝑅 ) 𝑢 ) ] ( 𝑅 ~QG 𝑆 ) ) |
| 47 | 30 43 46 | 3eqtr4rd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑅 ) ) → ( [ 𝑣 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ) = ( [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) [ 𝑣 ] ( 𝑅 ~QG 𝑆 ) ) ) |
| 48 | 19 25 47 | ectocld | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑆 ) ) ) → ( 𝑥 ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ) = ( [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) 𝑥 ) ) |
| 49 | 48 | an32s | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑆 ) ) ) ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑈 ) [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ) = ( [ 𝑢 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) 𝑥 ) ) |
| 50 | 19 22 49 | ectocld | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑆 ) ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑆 ) ) ) → ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑈 ) 𝑥 ) ) |
| 51 | 50 | expl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → ( ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑆 ) ) ∧ 𝑦 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑆 ) ) ) → ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑈 ) 𝑥 ) ) ) |
| 52 | 18 51 | sylbird | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑈 ) 𝑥 ) ) ) |
| 53 | 52 | ralrimivv | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑈 ) 𝑥 ) ) |
| 54 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 55 | 54 41 | iscrng2 | ⊢ ( 𝑈 ∈ CRing ↔ ( 𝑈 ∈ Ring ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑈 ) 𝑥 ) ) ) |
| 56 | 10 53 55 | sylanbrc | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼 ) → 𝑈 ∈ CRing ) |