This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringcl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | iscrng2 | ⊢ ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringcl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 4 | 3 | iscrng | ⊢ ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ ( mulGrp ‘ 𝑅 ) ∈ CMnd ) ) |
| 5 | 3 | ringmgp | ⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 6 | 3 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 7 | 3 2 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 8 | 6 7 | iscmn | ⊢ ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ↔ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) ) |
| 9 | 8 | baib | ⊢ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd → ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) ) |
| 10 | 5 9 | syl | ⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) ) |
| 11 | 10 | pm5.32i | ⊢ ( ( 𝑅 ∈ Ring ∧ ( mulGrp ‘ 𝑅 ) ∈ CMnd ) ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) ) |
| 12 | 4 11 | bitri | ⊢ ( 𝑅 ∈ CRing ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) ) |