This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015) (Proof shortened by AV, 3-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | quscrng.u | |- U = ( R /s ( R ~QG S ) ) |
|
| quscrng.i | |- I = ( LIdeal ` R ) |
||
| Assertion | quscrng | |- ( ( R e. CRing /\ S e. I ) -> U e. CRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quscrng.u | |- U = ( R /s ( R ~QG S ) ) |
|
| 2 | quscrng.i | |- I = ( LIdeal ` R ) |
|
| 3 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 4 | simpr | |- ( ( R e. CRing /\ S e. I ) -> S e. I ) |
|
| 5 | 2 | crng2idl | |- ( R e. CRing -> I = ( 2Ideal ` R ) ) |
| 6 | 5 | adantr | |- ( ( R e. CRing /\ S e. I ) -> I = ( 2Ideal ` R ) ) |
| 7 | 4 6 | eleqtrd | |- ( ( R e. CRing /\ S e. I ) -> S e. ( 2Ideal ` R ) ) |
| 8 | eqid | |- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
|
| 9 | 1 8 | qusring | |- ( ( R e. Ring /\ S e. ( 2Ideal ` R ) ) -> U e. Ring ) |
| 10 | 3 7 9 | syl2an2r | |- ( ( R e. CRing /\ S e. I ) -> U e. Ring ) |
| 11 | 1 | a1i | |- ( ( R e. CRing /\ S e. I ) -> U = ( R /s ( R ~QG S ) ) ) |
| 12 | eqidd | |- ( ( R e. CRing /\ S e. I ) -> ( Base ` R ) = ( Base ` R ) ) |
|
| 13 | ovexd | |- ( ( R e. CRing /\ S e. I ) -> ( R ~QG S ) e. _V ) |
|
| 14 | 3 | adantr | |- ( ( R e. CRing /\ S e. I ) -> R e. Ring ) |
| 15 | 11 12 13 14 | qusbas | |- ( ( R e. CRing /\ S e. I ) -> ( ( Base ` R ) /. ( R ~QG S ) ) = ( Base ` U ) ) |
| 16 | 15 | eleq2d | |- ( ( R e. CRing /\ S e. I ) -> ( x e. ( ( Base ` R ) /. ( R ~QG S ) ) <-> x e. ( Base ` U ) ) ) |
| 17 | 15 | eleq2d | |- ( ( R e. CRing /\ S e. I ) -> ( y e. ( ( Base ` R ) /. ( R ~QG S ) ) <-> y e. ( Base ` U ) ) ) |
| 18 | 16 17 | anbi12d | |- ( ( R e. CRing /\ S e. I ) -> ( ( x e. ( ( Base ` R ) /. ( R ~QG S ) ) /\ y e. ( ( Base ` R ) /. ( R ~QG S ) ) ) <-> ( x e. ( Base ` U ) /\ y e. ( Base ` U ) ) ) ) |
| 19 | eqid | |- ( ( Base ` R ) /. ( R ~QG S ) ) = ( ( Base ` R ) /. ( R ~QG S ) ) |
|
| 20 | oveq2 | |- ( [ u ] ( R ~QG S ) = y -> ( x ( .r ` U ) [ u ] ( R ~QG S ) ) = ( x ( .r ` U ) y ) ) |
|
| 21 | oveq1 | |- ( [ u ] ( R ~QG S ) = y -> ( [ u ] ( R ~QG S ) ( .r ` U ) x ) = ( y ( .r ` U ) x ) ) |
|
| 22 | 20 21 | eqeq12d | |- ( [ u ] ( R ~QG S ) = y -> ( ( x ( .r ` U ) [ u ] ( R ~QG S ) ) = ( [ u ] ( R ~QG S ) ( .r ` U ) x ) <-> ( x ( .r ` U ) y ) = ( y ( .r ` U ) x ) ) ) |
| 23 | oveq1 | |- ( [ v ] ( R ~QG S ) = x -> ( [ v ] ( R ~QG S ) ( .r ` U ) [ u ] ( R ~QG S ) ) = ( x ( .r ` U ) [ u ] ( R ~QG S ) ) ) |
|
| 24 | oveq2 | |- ( [ v ] ( R ~QG S ) = x -> ( [ u ] ( R ~QG S ) ( .r ` U ) [ v ] ( R ~QG S ) ) = ( [ u ] ( R ~QG S ) ( .r ` U ) x ) ) |
|
| 25 | 23 24 | eqeq12d | |- ( [ v ] ( R ~QG S ) = x -> ( ( [ v ] ( R ~QG S ) ( .r ` U ) [ u ] ( R ~QG S ) ) = ( [ u ] ( R ~QG S ) ( .r ` U ) [ v ] ( R ~QG S ) ) <-> ( x ( .r ` U ) [ u ] ( R ~QG S ) ) = ( [ u ] ( R ~QG S ) ( .r ` U ) x ) ) ) |
| 26 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 27 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 28 | 26 27 | crngcom | |- ( ( R e. CRing /\ u e. ( Base ` R ) /\ v e. ( Base ` R ) ) -> ( u ( .r ` R ) v ) = ( v ( .r ` R ) u ) ) |
| 29 | 28 | ad4ant134 | |- ( ( ( ( R e. CRing /\ S e. I ) /\ u e. ( Base ` R ) ) /\ v e. ( Base ` R ) ) -> ( u ( .r ` R ) v ) = ( v ( .r ` R ) u ) ) |
| 30 | 29 | eceq1d | |- ( ( ( ( R e. CRing /\ S e. I ) /\ u e. ( Base ` R ) ) /\ v e. ( Base ` R ) ) -> [ ( u ( .r ` R ) v ) ] ( R ~QG S ) = [ ( v ( .r ` R ) u ) ] ( R ~QG S ) ) |
| 31 | ringrng | |- ( R e. Ring -> R e. Rng ) |
|
| 32 | 3 31 | syl | |- ( R e. CRing -> R e. Rng ) |
| 33 | 32 | adantr | |- ( ( R e. CRing /\ S e. I ) -> R e. Rng ) |
| 34 | 2 | lidlsubg | |- ( ( R e. Ring /\ S e. I ) -> S e. ( SubGrp ` R ) ) |
| 35 | 3 34 | sylan | |- ( ( R e. CRing /\ S e. I ) -> S e. ( SubGrp ` R ) ) |
| 36 | 33 7 35 | 3jca | |- ( ( R e. CRing /\ S e. I ) -> ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) ) |
| 37 | 36 | adantr | |- ( ( ( R e. CRing /\ S e. I ) /\ u e. ( Base ` R ) ) -> ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) ) |
| 38 | simpr | |- ( ( ( R e. CRing /\ S e. I ) /\ u e. ( Base ` R ) ) -> u e. ( Base ` R ) ) |
|
| 39 | 38 | anim1i | |- ( ( ( ( R e. CRing /\ S e. I ) /\ u e. ( Base ` R ) ) /\ v e. ( Base ` R ) ) -> ( u e. ( Base ` R ) /\ v e. ( Base ` R ) ) ) |
| 40 | eqid | |- ( R ~QG S ) = ( R ~QG S ) |
|
| 41 | eqid | |- ( .r ` U ) = ( .r ` U ) |
|
| 42 | 40 1 26 27 41 | qusmulrng | |- ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ ( u e. ( Base ` R ) /\ v e. ( Base ` R ) ) ) -> ( [ u ] ( R ~QG S ) ( .r ` U ) [ v ] ( R ~QG S ) ) = [ ( u ( .r ` R ) v ) ] ( R ~QG S ) ) |
| 43 | 37 39 42 | syl2an2r | |- ( ( ( ( R e. CRing /\ S e. I ) /\ u e. ( Base ` R ) ) /\ v e. ( Base ` R ) ) -> ( [ u ] ( R ~QG S ) ( .r ` U ) [ v ] ( R ~QG S ) ) = [ ( u ( .r ` R ) v ) ] ( R ~QG S ) ) |
| 44 | 39 | ancomd | |- ( ( ( ( R e. CRing /\ S e. I ) /\ u e. ( Base ` R ) ) /\ v e. ( Base ` R ) ) -> ( v e. ( Base ` R ) /\ u e. ( Base ` R ) ) ) |
| 45 | 40 1 26 27 41 | qusmulrng | |- ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ ( v e. ( Base ` R ) /\ u e. ( Base ` R ) ) ) -> ( [ v ] ( R ~QG S ) ( .r ` U ) [ u ] ( R ~QG S ) ) = [ ( v ( .r ` R ) u ) ] ( R ~QG S ) ) |
| 46 | 37 44 45 | syl2an2r | |- ( ( ( ( R e. CRing /\ S e. I ) /\ u e. ( Base ` R ) ) /\ v e. ( Base ` R ) ) -> ( [ v ] ( R ~QG S ) ( .r ` U ) [ u ] ( R ~QG S ) ) = [ ( v ( .r ` R ) u ) ] ( R ~QG S ) ) |
| 47 | 30 43 46 | 3eqtr4rd | |- ( ( ( ( R e. CRing /\ S e. I ) /\ u e. ( Base ` R ) ) /\ v e. ( Base ` R ) ) -> ( [ v ] ( R ~QG S ) ( .r ` U ) [ u ] ( R ~QG S ) ) = ( [ u ] ( R ~QG S ) ( .r ` U ) [ v ] ( R ~QG S ) ) ) |
| 48 | 19 25 47 | ectocld | |- ( ( ( ( R e. CRing /\ S e. I ) /\ u e. ( Base ` R ) ) /\ x e. ( ( Base ` R ) /. ( R ~QG S ) ) ) -> ( x ( .r ` U ) [ u ] ( R ~QG S ) ) = ( [ u ] ( R ~QG S ) ( .r ` U ) x ) ) |
| 49 | 48 | an32s | |- ( ( ( ( R e. CRing /\ S e. I ) /\ x e. ( ( Base ` R ) /. ( R ~QG S ) ) ) /\ u e. ( Base ` R ) ) -> ( x ( .r ` U ) [ u ] ( R ~QG S ) ) = ( [ u ] ( R ~QG S ) ( .r ` U ) x ) ) |
| 50 | 19 22 49 | ectocld | |- ( ( ( ( R e. CRing /\ S e. I ) /\ x e. ( ( Base ` R ) /. ( R ~QG S ) ) ) /\ y e. ( ( Base ` R ) /. ( R ~QG S ) ) ) -> ( x ( .r ` U ) y ) = ( y ( .r ` U ) x ) ) |
| 51 | 50 | expl | |- ( ( R e. CRing /\ S e. I ) -> ( ( x e. ( ( Base ` R ) /. ( R ~QG S ) ) /\ y e. ( ( Base ` R ) /. ( R ~QG S ) ) ) -> ( x ( .r ` U ) y ) = ( y ( .r ` U ) x ) ) ) |
| 52 | 18 51 | sylbird | |- ( ( R e. CRing /\ S e. I ) -> ( ( x e. ( Base ` U ) /\ y e. ( Base ` U ) ) -> ( x ( .r ` U ) y ) = ( y ( .r ` U ) x ) ) ) |
| 53 | 52 | ralrimivv | |- ( ( R e. CRing /\ S e. I ) -> A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( .r ` U ) y ) = ( y ( .r ` U ) x ) ) |
| 54 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 55 | 54 41 | iscrng2 | |- ( U e. CRing <-> ( U e. Ring /\ A. x e. ( Base ` U ) A. y e. ( Base ` U ) ( x ( .r ` U ) y ) = ( y ( .r ` U ) x ) ) ) |
| 56 | 10 53 55 | sylanbrc | |- ( ( R e. CRing /\ S e. I ) -> U e. CRing ) |