This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng . Similar to qusmul2idl . (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 28-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusmulrng.e | ⊢ ∼ = ( 𝑅 ~QG 𝑆 ) | |
| qusmulrng.h | ⊢ 𝐻 = ( 𝑅 /s ∼ ) | ||
| qusmulrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| qusmulrng.p | ⊢ · = ( .r ‘ 𝑅 ) | ||
| qusmulrng.a | ⊢ ∙ = ( .r ‘ 𝐻 ) | ||
| Assertion | qusmulrng | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( [ 𝑋 ] ∼ ∙ [ 𝑌 ] ∼ ) = [ ( 𝑋 · 𝑌 ) ] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusmulrng.e | ⊢ ∼ = ( 𝑅 ~QG 𝑆 ) | |
| 2 | qusmulrng.h | ⊢ 𝐻 = ( 𝑅 /s ∼ ) | |
| 3 | qusmulrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | qusmulrng.p | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | qusmulrng.a | ⊢ ∙ = ( .r ‘ 𝐻 ) | |
| 6 | 2 | a1i | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐻 = ( 𝑅 /s ∼ ) ) |
| 7 | 3 | a1i | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 8 | 3 1 | eqger | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → ∼ Er 𝐵 ) |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ∼ Er 𝐵 ) |
| 10 | simp1 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑅 ∈ Rng ) | |
| 11 | eqid | ⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) | |
| 12 | 3 1 11 4 | 2idlcpblrng | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝑎 ∼ 𝑏 ∧ 𝑐 ∼ 𝑑 ) → ( 𝑎 · 𝑐 ) ∼ ( 𝑏 · 𝑑 ) ) ) |
| 13 | 10 | anim1i | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( 𝑅 ∈ Rng ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) |
| 14 | 3anass | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) | |
| 15 | 13 14 | sylibr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( 𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) |
| 16 | 3 4 | rngcl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑏 · 𝑑 ) ∈ 𝐵 ) |
| 17 | 15 16 | syl | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( 𝑏 · 𝑑 ) ∈ 𝐵 ) |
| 18 | 6 7 9 10 12 17 4 5 | qusmulval | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( [ 𝑋 ] ∼ ∙ [ 𝑌 ] ∼ ) = [ ( 𝑋 · 𝑌 ) ] ∼ ) |
| 19 | 18 | 3expb | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( [ 𝑋 ] ∼ ∙ [ 𝑌 ] ∼ ) = [ ( 𝑋 · 𝑌 ) ] ∼ ) |