This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property of the quotient topology. If G is a function from J to K which is equal on all equivalent elements under F , then there is a unique continuous map f : ( J / F ) --> K such that G = f o. F , and we say that G "passes to the quotient". (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qtopeu.1 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| qtopeu.3 | |- ( ph -> F : X -onto-> Y ) |
||
| qtopeu.4 | |- ( ph -> G e. ( J Cn K ) ) |
||
| qtopeu.5 | |- ( ( ph /\ ( x e. X /\ y e. X /\ ( F ` x ) = ( F ` y ) ) ) -> ( G ` x ) = ( G ` y ) ) |
||
| Assertion | qtopeu | |- ( ph -> E! f e. ( ( J qTop F ) Cn K ) G = ( f o. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopeu.1 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 2 | qtopeu.3 | |- ( ph -> F : X -onto-> Y ) |
|
| 3 | qtopeu.4 | |- ( ph -> G e. ( J Cn K ) ) |
|
| 4 | qtopeu.5 | |- ( ( ph /\ ( x e. X /\ y e. X /\ ( F ` x ) = ( F ` y ) ) ) -> ( G ` x ) = ( G ` y ) ) |
|
| 5 | fofn | |- ( F : X -onto-> Y -> F Fn X ) |
|
| 6 | 2 5 | syl | |- ( ph -> F Fn X ) |
| 7 | 6 | adantr | |- ( ( ph /\ x e. X ) -> F Fn X ) |
| 8 | fniniseg | |- ( F Fn X -> ( y e. ( `' F " { ( F ` x ) } ) <-> ( y e. X /\ ( F ` y ) = ( F ` x ) ) ) ) |
|
| 9 | 7 8 | syl | |- ( ( ph /\ x e. X ) -> ( y e. ( `' F " { ( F ` x ) } ) <-> ( y e. X /\ ( F ` y ) = ( F ` x ) ) ) ) |
| 10 | eqcom | |- ( ( F ` x ) = ( F ` y ) <-> ( F ` y ) = ( F ` x ) ) |
|
| 11 | 10 | 3anbi3i | |- ( ( x e. X /\ y e. X /\ ( F ` x ) = ( F ` y ) ) <-> ( x e. X /\ y e. X /\ ( F ` y ) = ( F ` x ) ) ) |
| 12 | 3anass | |- ( ( x e. X /\ y e. X /\ ( F ` y ) = ( F ` x ) ) <-> ( x e. X /\ ( y e. X /\ ( F ` y ) = ( F ` x ) ) ) ) |
|
| 13 | 11 12 | bitri | |- ( ( x e. X /\ y e. X /\ ( F ` x ) = ( F ` y ) ) <-> ( x e. X /\ ( y e. X /\ ( F ` y ) = ( F ` x ) ) ) ) |
| 14 | 13 4 | sylan2br | |- ( ( ph /\ ( x e. X /\ ( y e. X /\ ( F ` y ) = ( F ` x ) ) ) ) -> ( G ` x ) = ( G ` y ) ) |
| 15 | 14 | eqcomd | |- ( ( ph /\ ( x e. X /\ ( y e. X /\ ( F ` y ) = ( F ` x ) ) ) ) -> ( G ` y ) = ( G ` x ) ) |
| 16 | 15 | expr | |- ( ( ph /\ x e. X ) -> ( ( y e. X /\ ( F ` y ) = ( F ` x ) ) -> ( G ` y ) = ( G ` x ) ) ) |
| 17 | 9 16 | sylbid | |- ( ( ph /\ x e. X ) -> ( y e. ( `' F " { ( F ` x ) } ) -> ( G ` y ) = ( G ` x ) ) ) |
| 18 | 17 | ralrimiv | |- ( ( ph /\ x e. X ) -> A. y e. ( `' F " { ( F ` x ) } ) ( G ` y ) = ( G ` x ) ) |
| 19 | cntop2 | |- ( G e. ( J Cn K ) -> K e. Top ) |
|
| 20 | 3 19 | syl | |- ( ph -> K e. Top ) |
| 21 | toptopon2 | |- ( K e. Top <-> K e. ( TopOn ` U. K ) ) |
|
| 22 | 20 21 | sylib | |- ( ph -> K e. ( TopOn ` U. K ) ) |
| 23 | cnf2 | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` U. K ) /\ G e. ( J Cn K ) ) -> G : X --> U. K ) |
|
| 24 | 1 22 3 23 | syl3anc | |- ( ph -> G : X --> U. K ) |
| 25 | 24 | ffnd | |- ( ph -> G Fn X ) |
| 26 | 25 | adantr | |- ( ( ph /\ x e. X ) -> G Fn X ) |
| 27 | cnvimass | |- ( `' F " { ( F ` x ) } ) C_ dom F |
|
| 28 | fof | |- ( F : X -onto-> Y -> F : X --> Y ) |
|
| 29 | 2 28 | syl | |- ( ph -> F : X --> Y ) |
| 30 | 29 | fdmd | |- ( ph -> dom F = X ) |
| 31 | 30 | adantr | |- ( ( ph /\ x e. X ) -> dom F = X ) |
| 32 | 27 31 | sseqtrid | |- ( ( ph /\ x e. X ) -> ( `' F " { ( F ` x ) } ) C_ X ) |
| 33 | eqeq1 | |- ( w = ( G ` y ) -> ( w = ( G ` x ) <-> ( G ` y ) = ( G ` x ) ) ) |
|
| 34 | 33 | ralima | |- ( ( G Fn X /\ ( `' F " { ( F ` x ) } ) C_ X ) -> ( A. w e. ( G " ( `' F " { ( F ` x ) } ) ) w = ( G ` x ) <-> A. y e. ( `' F " { ( F ` x ) } ) ( G ` y ) = ( G ` x ) ) ) |
| 35 | 26 32 34 | syl2anc | |- ( ( ph /\ x e. X ) -> ( A. w e. ( G " ( `' F " { ( F ` x ) } ) ) w = ( G ` x ) <-> A. y e. ( `' F " { ( F ` x ) } ) ( G ` y ) = ( G ` x ) ) ) |
| 36 | 18 35 | mpbird | |- ( ( ph /\ x e. X ) -> A. w e. ( G " ( `' F " { ( F ` x ) } ) ) w = ( G ` x ) ) |
| 37 | 24 | fdmd | |- ( ph -> dom G = X ) |
| 38 | 37 | eleq2d | |- ( ph -> ( x e. dom G <-> x e. X ) ) |
| 39 | 38 | biimpar | |- ( ( ph /\ x e. X ) -> x e. dom G ) |
| 40 | simpr | |- ( ( ph /\ x e. X ) -> x e. X ) |
|
| 41 | eqidd | |- ( ( ph /\ x e. X ) -> ( F ` x ) = ( F ` x ) ) |
|
| 42 | fniniseg | |- ( F Fn X -> ( x e. ( `' F " { ( F ` x ) } ) <-> ( x e. X /\ ( F ` x ) = ( F ` x ) ) ) ) |
|
| 43 | 7 42 | syl | |- ( ( ph /\ x e. X ) -> ( x e. ( `' F " { ( F ` x ) } ) <-> ( x e. X /\ ( F ` x ) = ( F ` x ) ) ) ) |
| 44 | 40 41 43 | mpbir2and | |- ( ( ph /\ x e. X ) -> x e. ( `' F " { ( F ` x ) } ) ) |
| 45 | inelcm | |- ( ( x e. dom G /\ x e. ( `' F " { ( F ` x ) } ) ) -> ( dom G i^i ( `' F " { ( F ` x ) } ) ) =/= (/) ) |
|
| 46 | 39 44 45 | syl2anc | |- ( ( ph /\ x e. X ) -> ( dom G i^i ( `' F " { ( F ` x ) } ) ) =/= (/) ) |
| 47 | imadisj | |- ( ( G " ( `' F " { ( F ` x ) } ) ) = (/) <-> ( dom G i^i ( `' F " { ( F ` x ) } ) ) = (/) ) |
|
| 48 | 47 | necon3bii | |- ( ( G " ( `' F " { ( F ` x ) } ) ) =/= (/) <-> ( dom G i^i ( `' F " { ( F ` x ) } ) ) =/= (/) ) |
| 49 | 46 48 | sylibr | |- ( ( ph /\ x e. X ) -> ( G " ( `' F " { ( F ` x ) } ) ) =/= (/) ) |
| 50 | eqsn | |- ( ( G " ( `' F " { ( F ` x ) } ) ) =/= (/) -> ( ( G " ( `' F " { ( F ` x ) } ) ) = { ( G ` x ) } <-> A. w e. ( G " ( `' F " { ( F ` x ) } ) ) w = ( G ` x ) ) ) |
|
| 51 | 49 50 | syl | |- ( ( ph /\ x e. X ) -> ( ( G " ( `' F " { ( F ` x ) } ) ) = { ( G ` x ) } <-> A. w e. ( G " ( `' F " { ( F ` x ) } ) ) w = ( G ` x ) ) ) |
| 52 | 36 51 | mpbird | |- ( ( ph /\ x e. X ) -> ( G " ( `' F " { ( F ` x ) } ) ) = { ( G ` x ) } ) |
| 53 | 52 | unieqd | |- ( ( ph /\ x e. X ) -> U. ( G " ( `' F " { ( F ` x ) } ) ) = U. { ( G ` x ) } ) |
| 54 | fvex | |- ( G ` x ) e. _V |
|
| 55 | 54 | unisn | |- U. { ( G ` x ) } = ( G ` x ) |
| 56 | 53 55 | eqtr2di | |- ( ( ph /\ x e. X ) -> ( G ` x ) = U. ( G " ( `' F " { ( F ` x ) } ) ) ) |
| 57 | 56 | mpteq2dva | |- ( ph -> ( x e. X |-> ( G ` x ) ) = ( x e. X |-> U. ( G " ( `' F " { ( F ` x ) } ) ) ) ) |
| 58 | 24 | feqmptd | |- ( ph -> G = ( x e. X |-> ( G ` x ) ) ) |
| 59 | 29 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( F ` x ) e. Y ) |
| 60 | 29 | feqmptd | |- ( ph -> F = ( x e. X |-> ( F ` x ) ) ) |
| 61 | eqidd | |- ( ph -> ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) = ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) ) |
|
| 62 | sneq | |- ( w = ( F ` x ) -> { w } = { ( F ` x ) } ) |
|
| 63 | 62 | imaeq2d | |- ( w = ( F ` x ) -> ( `' F " { w } ) = ( `' F " { ( F ` x ) } ) ) |
| 64 | 63 | imaeq2d | |- ( w = ( F ` x ) -> ( G " ( `' F " { w } ) ) = ( G " ( `' F " { ( F ` x ) } ) ) ) |
| 65 | 64 | unieqd | |- ( w = ( F ` x ) -> U. ( G " ( `' F " { w } ) ) = U. ( G " ( `' F " { ( F ` x ) } ) ) ) |
| 66 | 59 60 61 65 | fmptco | |- ( ph -> ( ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) o. F ) = ( x e. X |-> U. ( G " ( `' F " { ( F ` x ) } ) ) ) ) |
| 67 | 57 58 66 | 3eqtr4d | |- ( ph -> G = ( ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) o. F ) ) |
| 68 | 67 3 | eqeltrrd | |- ( ph -> ( ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) o. F ) e. ( J Cn K ) ) |
| 69 | 24 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( G ` x ) e. U. K ) |
| 70 | 56 69 | eqeltrrd | |- ( ( ph /\ x e. X ) -> U. ( G " ( `' F " { ( F ` x ) } ) ) e. U. K ) |
| 71 | 70 | ralrimiva | |- ( ph -> A. x e. X U. ( G " ( `' F " { ( F ` x ) } ) ) e. U. K ) |
| 72 | 65 | eqcomd | |- ( w = ( F ` x ) -> U. ( G " ( `' F " { ( F ` x ) } ) ) = U. ( G " ( `' F " { w } ) ) ) |
| 73 | 72 | eqcoms | |- ( ( F ` x ) = w -> U. ( G " ( `' F " { ( F ` x ) } ) ) = U. ( G " ( `' F " { w } ) ) ) |
| 74 | 73 | eleq1d | |- ( ( F ` x ) = w -> ( U. ( G " ( `' F " { ( F ` x ) } ) ) e. U. K <-> U. ( G " ( `' F " { w } ) ) e. U. K ) ) |
| 75 | 74 | cbvfo | |- ( F : X -onto-> Y -> ( A. x e. X U. ( G " ( `' F " { ( F ` x ) } ) ) e. U. K <-> A. w e. Y U. ( G " ( `' F " { w } ) ) e. U. K ) ) |
| 76 | 2 75 | syl | |- ( ph -> ( A. x e. X U. ( G " ( `' F " { ( F ` x ) } ) ) e. U. K <-> A. w e. Y U. ( G " ( `' F " { w } ) ) e. U. K ) ) |
| 77 | 71 76 | mpbid | |- ( ph -> A. w e. Y U. ( G " ( `' F " { w } ) ) e. U. K ) |
| 78 | eqid | |- ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) = ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) |
|
| 79 | 78 | fmpt | |- ( A. w e. Y U. ( G " ( `' F " { w } ) ) e. U. K <-> ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) : Y --> U. K ) |
| 80 | 77 79 | sylib | |- ( ph -> ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) : Y --> U. K ) |
| 81 | qtopcn | |- ( ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` U. K ) ) /\ ( F : X -onto-> Y /\ ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) : Y --> U. K ) ) -> ( ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) e. ( ( J qTop F ) Cn K ) <-> ( ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) o. F ) e. ( J Cn K ) ) ) |
|
| 82 | 1 22 2 80 81 | syl22anc | |- ( ph -> ( ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) e. ( ( J qTop F ) Cn K ) <-> ( ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) o. F ) e. ( J Cn K ) ) ) |
| 83 | 68 82 | mpbird | |- ( ph -> ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) e. ( ( J qTop F ) Cn K ) ) |
| 84 | coeq1 | |- ( f = ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) -> ( f o. F ) = ( ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) o. F ) ) |
|
| 85 | 84 | rspceeqv | |- ( ( ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) e. ( ( J qTop F ) Cn K ) /\ G = ( ( w e. Y |-> U. ( G " ( `' F " { w } ) ) ) o. F ) ) -> E. f e. ( ( J qTop F ) Cn K ) G = ( f o. F ) ) |
| 86 | 83 67 85 | syl2anc | |- ( ph -> E. f e. ( ( J qTop F ) Cn K ) G = ( f o. F ) ) |
| 87 | eqtr2 | |- ( ( G = ( f o. F ) /\ G = ( g o. F ) ) -> ( f o. F ) = ( g o. F ) ) |
|
| 88 | 2 | adantr | |- ( ( ph /\ ( f e. ( ( J qTop F ) Cn K ) /\ g e. ( ( J qTop F ) Cn K ) ) ) -> F : X -onto-> Y ) |
| 89 | qtoptopon | |- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> Y ) -> ( J qTop F ) e. ( TopOn ` Y ) ) |
|
| 90 | 1 2 89 | syl2anc | |- ( ph -> ( J qTop F ) e. ( TopOn ` Y ) ) |
| 91 | 90 | adantr | |- ( ( ph /\ ( f e. ( ( J qTop F ) Cn K ) /\ g e. ( ( J qTop F ) Cn K ) ) ) -> ( J qTop F ) e. ( TopOn ` Y ) ) |
| 92 | 22 | adantr | |- ( ( ph /\ ( f e. ( ( J qTop F ) Cn K ) /\ g e. ( ( J qTop F ) Cn K ) ) ) -> K e. ( TopOn ` U. K ) ) |
| 93 | simprl | |- ( ( ph /\ ( f e. ( ( J qTop F ) Cn K ) /\ g e. ( ( J qTop F ) Cn K ) ) ) -> f e. ( ( J qTop F ) Cn K ) ) |
|
| 94 | cnf2 | |- ( ( ( J qTop F ) e. ( TopOn ` Y ) /\ K e. ( TopOn ` U. K ) /\ f e. ( ( J qTop F ) Cn K ) ) -> f : Y --> U. K ) |
|
| 95 | 91 92 93 94 | syl3anc | |- ( ( ph /\ ( f e. ( ( J qTop F ) Cn K ) /\ g e. ( ( J qTop F ) Cn K ) ) ) -> f : Y --> U. K ) |
| 96 | 95 | ffnd | |- ( ( ph /\ ( f e. ( ( J qTop F ) Cn K ) /\ g e. ( ( J qTop F ) Cn K ) ) ) -> f Fn Y ) |
| 97 | simprr | |- ( ( ph /\ ( f e. ( ( J qTop F ) Cn K ) /\ g e. ( ( J qTop F ) Cn K ) ) ) -> g e. ( ( J qTop F ) Cn K ) ) |
|
| 98 | cnf2 | |- ( ( ( J qTop F ) e. ( TopOn ` Y ) /\ K e. ( TopOn ` U. K ) /\ g e. ( ( J qTop F ) Cn K ) ) -> g : Y --> U. K ) |
|
| 99 | 91 92 97 98 | syl3anc | |- ( ( ph /\ ( f e. ( ( J qTop F ) Cn K ) /\ g e. ( ( J qTop F ) Cn K ) ) ) -> g : Y --> U. K ) |
| 100 | 99 | ffnd | |- ( ( ph /\ ( f e. ( ( J qTop F ) Cn K ) /\ g e. ( ( J qTop F ) Cn K ) ) ) -> g Fn Y ) |
| 101 | cocan2 | |- ( ( F : X -onto-> Y /\ f Fn Y /\ g Fn Y ) -> ( ( f o. F ) = ( g o. F ) <-> f = g ) ) |
|
| 102 | 88 96 100 101 | syl3anc | |- ( ( ph /\ ( f e. ( ( J qTop F ) Cn K ) /\ g e. ( ( J qTop F ) Cn K ) ) ) -> ( ( f o. F ) = ( g o. F ) <-> f = g ) ) |
| 103 | 87 102 | imbitrid | |- ( ( ph /\ ( f e. ( ( J qTop F ) Cn K ) /\ g e. ( ( J qTop F ) Cn K ) ) ) -> ( ( G = ( f o. F ) /\ G = ( g o. F ) ) -> f = g ) ) |
| 104 | 103 | ralrimivva | |- ( ph -> A. f e. ( ( J qTop F ) Cn K ) A. g e. ( ( J qTop F ) Cn K ) ( ( G = ( f o. F ) /\ G = ( g o. F ) ) -> f = g ) ) |
| 105 | coeq1 | |- ( f = g -> ( f o. F ) = ( g o. F ) ) |
|
| 106 | 105 | eqeq2d | |- ( f = g -> ( G = ( f o. F ) <-> G = ( g o. F ) ) ) |
| 107 | 106 | reu4 | |- ( E! f e. ( ( J qTop F ) Cn K ) G = ( f o. F ) <-> ( E. f e. ( ( J qTop F ) Cn K ) G = ( f o. F ) /\ A. f e. ( ( J qTop F ) Cn K ) A. g e. ( ( J qTop F ) Cn K ) ( ( G = ( f o. F ) /\ G = ( g o. F ) ) -> f = g ) ) ) |
| 108 | 86 104 107 | sylanbrc | |- ( ph -> E! f e. ( ( J qTop F ) Cn K ) G = ( f o. F ) ) |