This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rational numbers are a subset of any subfield of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qsssubdrg | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) → ℚ ⊆ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq | ⊢ ( 𝑧 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑧 = ( 𝑥 / 𝑦 ) ) | |
| 2 | drngring | ⊢ ( ( ℂfld ↾s 𝑅 ) ∈ DivRing → ( ℂfld ↾s 𝑅 ) ∈ Ring ) | |
| 3 | 2 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( ℂfld ↾s 𝑅 ) ∈ Ring ) |
| 4 | zsssubrg | ⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → ℤ ⊆ 𝑅 ) | |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ℤ ⊆ 𝑅 ) |
| 6 | eqid | ⊢ ( ℂfld ↾s 𝑅 ) = ( ℂfld ↾s 𝑅 ) | |
| 7 | 6 | subrgbas | ⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 𝑅 = ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑅 = ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 9 | 5 8 | sseqtrd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ℤ ⊆ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 10 | simprl | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑥 ∈ ℤ ) | |
| 11 | 9 10 | sseldd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 12 | nnz | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) | |
| 13 | 12 | ad2antll | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ∈ ℤ ) |
| 14 | 9 13 | sseldd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 15 | nnne0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) | |
| 16 | 15 | ad2antll | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ≠ 0 ) |
| 17 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 18 | 6 17 | subrg0 | ⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 0 = ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 20 | 16 19 | neeqtrd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ≠ ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 21 | eqid | ⊢ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) = ( Base ‘ ( ℂfld ↾s 𝑅 ) ) | |
| 22 | eqid | ⊢ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) = ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) | |
| 23 | eqid | ⊢ ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) = ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) | |
| 24 | 21 22 23 | drngunit | ⊢ ( ( ℂfld ↾s 𝑅 ) ∈ DivRing → ( 𝑦 ∈ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) ↔ ( 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ∧ 𝑦 ≠ ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) ) ) ) |
| 25 | 24 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑦 ∈ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) ↔ ( 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ∧ 𝑦 ≠ ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) ) ) ) |
| 26 | 14 20 25 | mpbir2and | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ∈ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 27 | eqid | ⊢ ( /r ‘ ( ℂfld ↾s 𝑅 ) ) = ( /r ‘ ( ℂfld ↾s 𝑅 ) ) | |
| 28 | 21 22 27 | dvrcl | ⊢ ( ( ( ℂfld ↾s 𝑅 ) ∈ Ring ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) ) → ( 𝑥 ( /r ‘ ( ℂfld ↾s 𝑅 ) ) 𝑦 ) ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 29 | 3 11 26 28 | syl3anc | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 ( /r ‘ ( ℂfld ↾s 𝑅 ) ) 𝑦 ) ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 30 | simpll | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑅 ∈ ( SubRing ‘ ℂfld ) ) | |
| 31 | 5 10 | sseldd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑥 ∈ 𝑅 ) |
| 32 | cnflddiv | ⊢ / = ( /r ‘ ℂfld ) | |
| 33 | 6 32 22 27 | subrgdv | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) ) → ( 𝑥 / 𝑦 ) = ( 𝑥 ( /r ‘ ( ℂfld ↾s 𝑅 ) ) 𝑦 ) ) |
| 34 | 30 31 26 33 | syl3anc | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 / 𝑦 ) = ( 𝑥 ( /r ‘ ( ℂfld ↾s 𝑅 ) ) 𝑦 ) ) |
| 35 | 29 34 8 | 3eltr4d | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 / 𝑦 ) ∈ 𝑅 ) |
| 36 | eleq1 | ⊢ ( 𝑧 = ( 𝑥 / 𝑦 ) → ( 𝑧 ∈ 𝑅 ↔ ( 𝑥 / 𝑦 ) ∈ 𝑅 ) ) | |
| 37 | 35 36 | syl5ibrcom | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑧 = ( 𝑥 / 𝑦 ) → 𝑧 ∈ 𝑅 ) ) |
| 38 | 37 | rexlimdvva | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑧 = ( 𝑥 / 𝑦 ) → 𝑧 ∈ 𝑅 ) ) |
| 39 | 1 38 | biimtrid | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) → ( 𝑧 ∈ ℚ → 𝑧 ∈ 𝑅 ) ) |
| 40 | 39 | ssrdv | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) → ℚ ⊆ 𝑅 ) |