This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zsssubrg | ⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → ℤ ⊆ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℤ ) | |
| 2 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 3 | cnfldmulg | ⊢ ( ( 𝑥 ∈ ℤ ∧ 1 ∈ ℂ ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = ( 𝑥 · 1 ) ) | |
| 4 | 1 2 3 | sylancl | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = ( 𝑥 · 1 ) ) |
| 5 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℂ ) |
| 7 | 6 | mulridd | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 · 1 ) = 𝑥 ) |
| 8 | 4 7 | eqtrd | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) = 𝑥 ) |
| 9 | subrgsubg | ⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 𝑅 ∈ ( SubGrp ‘ ℂfld ) ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → 𝑅 ∈ ( SubGrp ‘ ℂfld ) ) |
| 11 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 12 | 11 | subrg1cl | ⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 1 ∈ 𝑅 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → 1 ∈ 𝑅 ) |
| 14 | eqid | ⊢ ( .g ‘ ℂfld ) = ( .g ‘ ℂfld ) | |
| 15 | 14 | subgmulgcl | ⊢ ( ( 𝑅 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ∧ 1 ∈ 𝑅 ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) ∈ 𝑅 ) |
| 16 | 10 1 13 15 | syl3anc | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ( .g ‘ ℂfld ) 1 ) ∈ 𝑅 ) |
| 17 | 8 16 | eqeltrrd | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ 𝑅 ) |
| 18 | 17 | ex | ⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → ( 𝑥 ∈ ℤ → 𝑥 ∈ 𝑅 ) ) |
| 19 | 18 | ssrdv | ⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → ℤ ⊆ 𝑅 ) |