This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rational numbers are a subset of any subfield of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qsssubdrg | |- ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) -> QQ C_ R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq | |- ( z e. QQ <-> E. x e. ZZ E. y e. NN z = ( x / y ) ) |
|
| 2 | drngring | |- ( ( CCfld |`s R ) e. DivRing -> ( CCfld |`s R ) e. Ring ) |
|
| 3 | 2 | ad2antlr | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( CCfld |`s R ) e. Ring ) |
| 4 | zsssubrg | |- ( R e. ( SubRing ` CCfld ) -> ZZ C_ R ) |
|
| 5 | 4 | ad2antrr | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ZZ C_ R ) |
| 6 | eqid | |- ( CCfld |`s R ) = ( CCfld |`s R ) |
|
| 7 | 6 | subrgbas | |- ( R e. ( SubRing ` CCfld ) -> R = ( Base ` ( CCfld |`s R ) ) ) |
| 8 | 7 | ad2antrr | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> R = ( Base ` ( CCfld |`s R ) ) ) |
| 9 | 5 8 | sseqtrd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ZZ C_ ( Base ` ( CCfld |`s R ) ) ) |
| 10 | simprl | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> x e. ZZ ) |
|
| 11 | 9 10 | sseldd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> x e. ( Base ` ( CCfld |`s R ) ) ) |
| 12 | nnz | |- ( y e. NN -> y e. ZZ ) |
|
| 13 | 12 | ad2antll | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y e. ZZ ) |
| 14 | 9 13 | sseldd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y e. ( Base ` ( CCfld |`s R ) ) ) |
| 15 | nnne0 | |- ( y e. NN -> y =/= 0 ) |
|
| 16 | 15 | ad2antll | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y =/= 0 ) |
| 17 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 18 | 6 17 | subrg0 | |- ( R e. ( SubRing ` CCfld ) -> 0 = ( 0g ` ( CCfld |`s R ) ) ) |
| 19 | 18 | ad2antrr | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> 0 = ( 0g ` ( CCfld |`s R ) ) ) |
| 20 | 16 19 | neeqtrd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y =/= ( 0g ` ( CCfld |`s R ) ) ) |
| 21 | eqid | |- ( Base ` ( CCfld |`s R ) ) = ( Base ` ( CCfld |`s R ) ) |
|
| 22 | eqid | |- ( Unit ` ( CCfld |`s R ) ) = ( Unit ` ( CCfld |`s R ) ) |
|
| 23 | eqid | |- ( 0g ` ( CCfld |`s R ) ) = ( 0g ` ( CCfld |`s R ) ) |
|
| 24 | 21 22 23 | drngunit | |- ( ( CCfld |`s R ) e. DivRing -> ( y e. ( Unit ` ( CCfld |`s R ) ) <-> ( y e. ( Base ` ( CCfld |`s R ) ) /\ y =/= ( 0g ` ( CCfld |`s R ) ) ) ) ) |
| 25 | 24 | ad2antlr | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( y e. ( Unit ` ( CCfld |`s R ) ) <-> ( y e. ( Base ` ( CCfld |`s R ) ) /\ y =/= ( 0g ` ( CCfld |`s R ) ) ) ) ) |
| 26 | 14 20 25 | mpbir2and | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y e. ( Unit ` ( CCfld |`s R ) ) ) |
| 27 | eqid | |- ( /r ` ( CCfld |`s R ) ) = ( /r ` ( CCfld |`s R ) ) |
|
| 28 | 21 22 27 | dvrcl | |- ( ( ( CCfld |`s R ) e. Ring /\ x e. ( Base ` ( CCfld |`s R ) ) /\ y e. ( Unit ` ( CCfld |`s R ) ) ) -> ( x ( /r ` ( CCfld |`s R ) ) y ) e. ( Base ` ( CCfld |`s R ) ) ) |
| 29 | 3 11 26 28 | syl3anc | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( x ( /r ` ( CCfld |`s R ) ) y ) e. ( Base ` ( CCfld |`s R ) ) ) |
| 30 | simpll | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> R e. ( SubRing ` CCfld ) ) |
|
| 31 | 5 10 | sseldd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> x e. R ) |
| 32 | cnflddiv | |- / = ( /r ` CCfld ) |
|
| 33 | 6 32 22 27 | subrgdv | |- ( ( R e. ( SubRing ` CCfld ) /\ x e. R /\ y e. ( Unit ` ( CCfld |`s R ) ) ) -> ( x / y ) = ( x ( /r ` ( CCfld |`s R ) ) y ) ) |
| 34 | 30 31 26 33 | syl3anc | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( x / y ) = ( x ( /r ` ( CCfld |`s R ) ) y ) ) |
| 35 | 29 34 8 | 3eltr4d | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( x / y ) e. R ) |
| 36 | eleq1 | |- ( z = ( x / y ) -> ( z e. R <-> ( x / y ) e. R ) ) |
|
| 37 | 35 36 | syl5ibrcom | |- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( z = ( x / y ) -> z e. R ) ) |
| 38 | 37 | rexlimdvva | |- ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) -> ( E. x e. ZZ E. y e. NN z = ( x / y ) -> z e. R ) ) |
| 39 | 1 38 | biimtrid | |- ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) -> ( z e. QQ -> z e. R ) ) |
| 40 | 39 | ssrdv | |- ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) -> QQ C_ R ) |