This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There are no subrings of the complex numbers strictly between RR and CC . (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnsubrg | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) → 𝑅 ∈ { ℝ , ℂ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdif0 | ⊢ ( 𝑅 ⊆ ℝ ↔ ( 𝑅 ∖ ℝ ) = ∅ ) | |
| 2 | simpr | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑅 ⊆ ℝ ) → 𝑅 ⊆ ℝ ) | |
| 3 | simplr | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑅 ⊆ ℝ ) → ℝ ⊆ 𝑅 ) | |
| 4 | 2 3 | eqssd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑅 ⊆ ℝ ) → 𝑅 = ℝ ) |
| 5 | 4 | orcd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑅 ⊆ ℝ ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
| 6 | 1 5 | sylan2br | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑅 ∖ ℝ ) = ∅ ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
| 7 | n0 | ⊢ ( ( 𝑅 ∖ ℝ ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) | |
| 8 | simpll | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑅 ∈ ( SubRing ‘ ℂfld ) ) | |
| 9 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 10 | 9 | subrgss | ⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 𝑅 ⊆ ℂ ) |
| 11 | 8 10 | syl | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑅 ⊆ ℂ ) |
| 12 | replim | ⊢ ( 𝑦 ∈ ℂ → 𝑦 = ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ) | |
| 13 | 12 | ad2antll | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → 𝑦 = ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ) |
| 14 | simpll | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → 𝑅 ∈ ( SubRing ‘ ℂfld ) ) | |
| 15 | simplr | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ℝ ⊆ 𝑅 ) | |
| 16 | recl | ⊢ ( 𝑦 ∈ ℂ → ( ℜ ‘ 𝑦 ) ∈ ℝ ) | |
| 17 | 16 | ad2antll | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( ℜ ‘ 𝑦 ) ∈ ℝ ) |
| 18 | 15 17 | sseldd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( ℜ ‘ 𝑦 ) ∈ 𝑅 ) |
| 19 | ax-icn | ⊢ i ∈ ℂ | |
| 20 | 19 | a1i | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → i ∈ ℂ ) |
| 21 | eldifi | ⊢ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) → 𝑥 ∈ 𝑅 ) | |
| 22 | 21 | adantl | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑥 ∈ 𝑅 ) |
| 23 | 11 22 | sseldd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑥 ∈ ℂ ) |
| 24 | imcl | ⊢ ( 𝑥 ∈ ℂ → ( ℑ ‘ 𝑥 ) ∈ ℝ ) | |
| 25 | 23 24 | syl | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ℑ ‘ 𝑥 ) ∈ ℝ ) |
| 26 | 25 | recnd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ℑ ‘ 𝑥 ) ∈ ℂ ) |
| 27 | eldifn | ⊢ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) → ¬ 𝑥 ∈ ℝ ) | |
| 28 | 27 | adantl | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ¬ 𝑥 ∈ ℝ ) |
| 29 | reim0b | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) = 0 ) ) | |
| 30 | 29 | necon3bbid | ⊢ ( 𝑥 ∈ ℂ → ( ¬ 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) ≠ 0 ) ) |
| 31 | 23 30 | syl | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ¬ 𝑥 ∈ ℝ ↔ ( ℑ ‘ 𝑥 ) ≠ 0 ) ) |
| 32 | 28 31 | mpbid | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ℑ ‘ 𝑥 ) ≠ 0 ) |
| 33 | 20 26 32 | divcan4d | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ( i · ( ℑ ‘ 𝑥 ) ) / ( ℑ ‘ 𝑥 ) ) = i ) |
| 34 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝑥 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝑥 ) ) ∈ ℂ ) | |
| 35 | 19 26 34 | sylancr | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( i · ( ℑ ‘ 𝑥 ) ) ∈ ℂ ) |
| 36 | 35 26 32 | divrecd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ( i · ( ℑ ‘ 𝑥 ) ) / ( ℑ ‘ 𝑥 ) ) = ( ( i · ( ℑ ‘ 𝑥 ) ) · ( 1 / ( ℑ ‘ 𝑥 ) ) ) ) |
| 37 | 33 36 | eqtr3d | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → i = ( ( i · ( ℑ ‘ 𝑥 ) ) · ( 1 / ( ℑ ‘ 𝑥 ) ) ) ) |
| 38 | 23 | recld | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ℜ ‘ 𝑥 ) ∈ ℝ ) |
| 39 | 38 | recnd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ℜ ‘ 𝑥 ) ∈ ℂ ) |
| 40 | 23 39 | negsubd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑥 + - ( ℜ ‘ 𝑥 ) ) = ( 𝑥 − ( ℜ ‘ 𝑥 ) ) ) |
| 41 | replim | ⊢ ( 𝑥 ∈ ℂ → 𝑥 = ( ( ℜ ‘ 𝑥 ) + ( i · ( ℑ ‘ 𝑥 ) ) ) ) | |
| 42 | 23 41 | syl | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑥 = ( ( ℜ ‘ 𝑥 ) + ( i · ( ℑ ‘ 𝑥 ) ) ) ) |
| 43 | 42 | oveq1d | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑥 − ( ℜ ‘ 𝑥 ) ) = ( ( ( ℜ ‘ 𝑥 ) + ( i · ( ℑ ‘ 𝑥 ) ) ) − ( ℜ ‘ 𝑥 ) ) ) |
| 44 | 39 35 | pncan2d | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ( ( ℜ ‘ 𝑥 ) + ( i · ( ℑ ‘ 𝑥 ) ) ) − ( ℜ ‘ 𝑥 ) ) = ( i · ( ℑ ‘ 𝑥 ) ) ) |
| 45 | 40 43 44 | 3eqtrd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑥 + - ( ℜ ‘ 𝑥 ) ) = ( i · ( ℑ ‘ 𝑥 ) ) ) |
| 46 | simplr | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ℝ ⊆ 𝑅 ) | |
| 47 | 38 | renegcld | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → - ( ℜ ‘ 𝑥 ) ∈ ℝ ) |
| 48 | 46 47 | sseldd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → - ( ℜ ‘ 𝑥 ) ∈ 𝑅 ) |
| 49 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 50 | 49 | subrgacl | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ 𝑅 ∧ - ( ℜ ‘ 𝑥 ) ∈ 𝑅 ) → ( 𝑥 + - ( ℜ ‘ 𝑥 ) ) ∈ 𝑅 ) |
| 51 | 8 22 48 50 | syl3anc | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑥 + - ( ℜ ‘ 𝑥 ) ) ∈ 𝑅 ) |
| 52 | 45 51 | eqeltrrd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( i · ( ℑ ‘ 𝑥 ) ) ∈ 𝑅 ) |
| 53 | 25 32 | rereccld | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 1 / ( ℑ ‘ 𝑥 ) ) ∈ ℝ ) |
| 54 | 46 53 | sseldd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 1 / ( ℑ ‘ 𝑥 ) ) ∈ 𝑅 ) |
| 55 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 56 | 55 | subrgmcl | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( i · ( ℑ ‘ 𝑥 ) ) ∈ 𝑅 ∧ ( 1 / ( ℑ ‘ 𝑥 ) ) ∈ 𝑅 ) → ( ( i · ( ℑ ‘ 𝑥 ) ) · ( 1 / ( ℑ ‘ 𝑥 ) ) ) ∈ 𝑅 ) |
| 57 | 8 52 54 56 | syl3anc | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( ( i · ( ℑ ‘ 𝑥 ) ) · ( 1 / ( ℑ ‘ 𝑥 ) ) ) ∈ 𝑅 ) |
| 58 | 37 57 | eqeltrd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → i ∈ 𝑅 ) |
| 59 | 58 | adantrr | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → i ∈ 𝑅 ) |
| 60 | imcl | ⊢ ( 𝑦 ∈ ℂ → ( ℑ ‘ 𝑦 ) ∈ ℝ ) | |
| 61 | 60 | ad2antll | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( ℑ ‘ 𝑦 ) ∈ ℝ ) |
| 62 | 15 61 | sseldd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( ℑ ‘ 𝑦 ) ∈ 𝑅 ) |
| 63 | 55 | subrgmcl | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ i ∈ 𝑅 ∧ ( ℑ ‘ 𝑦 ) ∈ 𝑅 ) → ( i · ( ℑ ‘ 𝑦 ) ) ∈ 𝑅 ) |
| 64 | 14 59 62 63 | syl3anc | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( i · ( ℑ ‘ 𝑦 ) ) ∈ 𝑅 ) |
| 65 | 49 | subrgacl | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℜ ‘ 𝑦 ) ∈ 𝑅 ∧ ( i · ( ℑ ‘ 𝑦 ) ) ∈ 𝑅 ) → ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ∈ 𝑅 ) |
| 66 | 14 18 64 65 | syl3anc | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → ( ( ℜ ‘ 𝑦 ) + ( i · ( ℑ ‘ 𝑦 ) ) ) ∈ 𝑅 ) |
| 67 | 13 66 | eqeltrd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) ∧ 𝑦 ∈ ℂ ) ) → 𝑦 ∈ 𝑅 ) |
| 68 | 67 | expr | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑦 ∈ ℂ → 𝑦 ∈ 𝑅 ) ) |
| 69 | 68 | ssrdv | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ℂ ⊆ 𝑅 ) |
| 70 | 11 69 | eqssd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → 𝑅 = ℂ ) |
| 71 | 70 | olcd | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
| 72 | 71 | ex | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) → ( 𝑥 ∈ ( 𝑅 ∖ ℝ ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) ) |
| 73 | 72 | exlimdv | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) → ( ∃ 𝑥 𝑥 ∈ ( 𝑅 ∖ ℝ ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) ) |
| 74 | 73 | imp | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ∃ 𝑥 𝑥 ∈ ( 𝑅 ∖ ℝ ) ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
| 75 | 7 74 | sylan2b | ⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) ∧ ( 𝑅 ∖ ℝ ) ≠ ∅ ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
| 76 | 6 75 | pm2.61dane | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) → ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) |
| 77 | elprg | ⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → ( 𝑅 ∈ { ℝ , ℂ } ↔ ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) ) | |
| 78 | 77 | adantr | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) → ( 𝑅 ∈ { ℝ , ℂ } ↔ ( 𝑅 = ℝ ∨ 𝑅 = ℂ ) ) ) |
| 79 | 76 78 | mpbird | ⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ℝ ⊆ 𝑅 ) → 𝑅 ∈ { ℝ , ℂ } ) |