This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgdv.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| subrgdv.2 | ⊢ / = ( /r ‘ 𝑅 ) | ||
| subrgdv.3 | ⊢ 𝑈 = ( Unit ‘ 𝑆 ) | ||
| subrgdv.4 | ⊢ 𝐸 = ( /r ‘ 𝑆 ) | ||
| Assertion | subrgdv | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 𝐸 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgdv.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | subrgdv.2 | ⊢ / = ( /r ‘ 𝑅 ) | |
| 3 | subrgdv.3 | ⊢ 𝑈 = ( Unit ‘ 𝑆 ) | |
| 4 | subrgdv.4 | ⊢ 𝐸 = ( /r ‘ 𝑆 ) | |
| 5 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) | |
| 7 | 1 5 3 6 | subrginv | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑌 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) = ( ( invr ‘ 𝑆 ) ‘ 𝑌 ) ) |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) = ( ( invr ‘ 𝑆 ) ‘ 𝑌 ) ) |
| 9 | 8 | oveq2d | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑆 ) ‘ 𝑌 ) ) ) |
| 10 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 11 | 1 10 | ressmulr | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 13 | 12 | oveqd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑆 ) ‘ 𝑌 ) ) = ( 𝑋 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑌 ) ) ) |
| 14 | 9 13 | eqtrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) = ( 𝑋 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑌 ) ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 16 | 15 | subrgss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 18 | simp2 | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ 𝐴 ) | |
| 19 | 17 18 | sseldd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 20 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 21 | 1 20 3 | subrguss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑈 ⊆ ( Unit ‘ 𝑅 ) ) |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → 𝑈 ⊆ ( Unit ‘ 𝑅 ) ) |
| 23 | simp3 | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) | |
| 24 | 22 23 | sseldd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ ( Unit ‘ 𝑅 ) ) |
| 25 | 15 10 20 5 2 | dvrval | ⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑌 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 26 | 19 24 25 | syl2anc | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 27 | 1 | subrgbas | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 29 | 18 28 | eleqtrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 30 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 31 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 32 | 30 31 3 6 4 | dvrval | ⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 𝐸 𝑌 ) = ( 𝑋 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑌 ) ) ) |
| 33 | 29 23 32 | syl2anc | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 𝐸 𝑌 ) = ( 𝑋 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑌 ) ) ) |
| 34 | 14 26 33 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 𝐸 𝑌 ) ) |