This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The division operation in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 2-Dec-2014) Avoid ax-mulf . (Revised by GG, 30-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnflddiv | ⊢ / = ( /r ‘ ℂfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnring | ⊢ ℂfld ∈ Ring | |
| 2 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 3 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 4 | cndrng | ⊢ ℂfld ∈ DivRing | |
| 5 | 2 3 4 | drngui | ⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
| 6 | eqid | ⊢ ( /r ‘ ℂfld ) = ( /r ‘ ℂfld ) | |
| 7 | 2 5 6 | dvrcl | ⊢ ( ( ℂfld ∈ Ring ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) ∈ ℂ ) |
| 8 | 1 7 | mp3an1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) ∈ ℂ ) |
| 9 | difssd | ⊢ ( 𝑥 ∈ ℂ → ( ℂ ∖ { 0 } ) ⊆ ℂ ) | |
| 10 | 9 | sselda | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ℂ ) |
| 11 | ovmpot | ⊢ ( ( ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) · 𝑦 ) ) | |
| 12 | 8 10 11 | syl2anc | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) · 𝑦 ) ) |
| 13 | mpocnfldmul | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) = ( .r ‘ ℂfld ) | |
| 14 | 2 5 6 13 | dvrcan1 | ⊢ ( ( ℂfld ∈ Ring ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = 𝑥 ) |
| 15 | 1 14 | mp3an1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = 𝑥 ) |
| 16 | 12 15 | eqtr3d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) · 𝑦 ) = 𝑥 ) |
| 17 | 16 | oveq1d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) · 𝑦 ) / 𝑦 ) = ( 𝑥 / 𝑦 ) ) |
| 18 | eldifsni | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ≠ 0 ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ≠ 0 ) |
| 20 | 8 10 19 | divcan4d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) · 𝑦 ) / 𝑦 ) = ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) ) |
| 21 | 17 20 | eqtr3d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 / 𝑦 ) = ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) ) |
| 22 | simpl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑥 ∈ ℂ ) | |
| 23 | divval | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 𝑥 / 𝑦 ) = ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) | |
| 24 | 22 10 19 23 | syl3anc | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 / 𝑦 ) = ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) |
| 25 | 21 24 | eqtr3d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) = ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) |
| 26 | eqid | ⊢ ( .r ‘ ℂfld ) = ( .r ‘ ℂfld ) | |
| 27 | eqid | ⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) | |
| 28 | 2 26 5 27 6 | dvrval | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) = ( 𝑥 ( .r ‘ ℂfld ) ( ( invr ‘ ℂfld ) ‘ 𝑦 ) ) ) |
| 29 | 25 28 | eqtr3d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) = ( 𝑥 ( .r ‘ ℂfld ) ( ( invr ‘ ℂfld ) ‘ 𝑦 ) ) ) |
| 30 | 29 | mpoeq3ia | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 ( .r ‘ ℂfld ) ( ( invr ‘ ℂfld ) ‘ 𝑦 ) ) ) |
| 31 | df-div | ⊢ / = ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) | |
| 32 | 2 26 5 27 6 | dvrfval | ⊢ ( /r ‘ ℂfld ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 ( .r ‘ ℂfld ) ( ( invr ‘ ℂfld ) ‘ 𝑦 ) ) ) |
| 33 | 30 31 32 | 3eqtr4i | ⊢ / = ( /r ‘ ℂfld ) |