This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Show that M (which will eventually be closely related to the m in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pythagtriplem11.1 | ⊢ 𝑀 = ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) | |
| Assertion | pythagtriplem11 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝑀 ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagtriplem11.1 | ⊢ 𝑀 = ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) | |
| 2 | pythagtriplem9 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 + 𝐵 ) ) ∈ ℕ ) | |
| 3 | 2 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 + 𝐵 ) ) ∈ ℤ ) |
| 4 | simp3r | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ 𝐴 ) | |
| 5 | 2z | ⊢ 2 ∈ ℤ | |
| 6 | nnz | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℤ ) | |
| 7 | 6 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℤ ) |
| 8 | nnz | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) | |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
| 10 | 7 9 | zaddcld | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
| 12 | nnz | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) | |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐴 ∈ ℤ ) |
| 15 | dvdsgcdb | ⊢ ( ( 2 ∈ ℤ ∧ ( 𝐶 + 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 2 ∥ ( 𝐶 + 𝐵 ) ∧ 2 ∥ 𝐴 ) ↔ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) ) | |
| 16 | 5 11 14 15 | mp3an2i | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 2 ∥ ( 𝐶 + 𝐵 ) ∧ 2 ∥ 𝐴 ) ↔ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) ) |
| 17 | 16 | biimpar | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) → ( 2 ∥ ( 𝐶 + 𝐵 ) ∧ 2 ∥ 𝐴 ) ) |
| 18 | 17 | simprd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) → 2 ∥ 𝐴 ) |
| 19 | 4 18 | mtand | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) |
| 20 | pythagtriplem7 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 + 𝐵 ) ) = ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) | |
| 21 | 20 | breq2d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 ∥ ( √ ‘ ( 𝐶 + 𝐵 ) ) ↔ 2 ∥ ( ( 𝐶 + 𝐵 ) gcd 𝐴 ) ) ) |
| 22 | 19 21 | mtbird | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ ( √ ‘ ( 𝐶 + 𝐵 ) ) ) |
| 23 | pythagtriplem8 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℕ ) | |
| 24 | 23 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℤ ) |
| 25 | 7 9 | zsubcld | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
| 26 | 25 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
| 27 | dvdsgcdb | ⊢ ( ( 2 ∈ ℤ ∧ ( 𝐶 − 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 2 ∥ ( 𝐶 − 𝐵 ) ∧ 2 ∥ 𝐴 ) ↔ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) ) | |
| 28 | 5 26 14 27 | mp3an2i | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 2 ∥ ( 𝐶 − 𝐵 ) ∧ 2 ∥ 𝐴 ) ↔ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) ) |
| 29 | 28 | biimpar | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) → ( 2 ∥ ( 𝐶 − 𝐵 ) ∧ 2 ∥ 𝐴 ) ) |
| 30 | 29 | simprd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) ∧ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) → 2 ∥ 𝐴 ) |
| 31 | 4 30 | mtand | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) |
| 32 | pythagtriplem6 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) = ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) | |
| 33 | 32 | breq2d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 ∥ ( √ ‘ ( 𝐶 − 𝐵 ) ) ↔ 2 ∥ ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) ) |
| 34 | 31 33 | mtbird | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ¬ 2 ∥ ( √ ‘ ( 𝐶 − 𝐵 ) ) ) |
| 35 | opoe | ⊢ ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) ∈ ℤ ∧ ¬ 2 ∥ ( √ ‘ ( 𝐶 + 𝐵 ) ) ) ∧ ( ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℤ ∧ ¬ 2 ∥ ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) → 2 ∥ ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) | |
| 36 | 3 22 24 34 35 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 2 ∥ ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) |
| 37 | 2 23 | nnaddcld | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℕ ) |
| 38 | 37 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℤ ) |
| 39 | evend2 | ⊢ ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℤ → ( 2 ∥ ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↔ ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℤ ) ) | |
| 40 | 38 39 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 ∥ ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↔ ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℤ ) ) |
| 41 | 36 40 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℤ ) |
| 42 | 2 | nnred | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 + 𝐵 ) ) ∈ ℝ ) |
| 43 | 23 | nnred | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℝ ) |
| 44 | 2 | nngt0d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 < ( √ ‘ ( 𝐶 + 𝐵 ) ) ) |
| 45 | 23 | nngt0d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 < ( √ ‘ ( 𝐶 − 𝐵 ) ) ) |
| 46 | 42 43 44 45 | addgt0d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 < ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ) |
| 47 | 37 | nnred | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℝ ) |
| 48 | halfpos2 | ⊢ ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ∈ ℝ → ( 0 < ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↔ 0 < ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ) ) | |
| 49 | 47 48 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 0 < ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) ↔ 0 < ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ) ) |
| 50 | 46 49 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 < ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ) |
| 51 | elnnz | ⊢ ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℕ ↔ ( ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℤ ∧ 0 < ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ) ) | |
| 52 | 41 50 51 | sylanbrc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) ∈ ℕ ) |
| 53 | 1 52 | eqeltrid | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝑀 ∈ ℕ ) |