This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Biconditional form of dvdsgcd . (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsgcdb | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) ↔ 𝐾 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsgcd | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ∥ ( 𝑀 gcd 𝑁 ) ) ) | |
| 2 | gcddvds | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 3 | 2 | simpld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) |
| 4 | 3 | 3adant1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) |
| 5 | simp1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 ∈ ℤ ) | |
| 6 | gcdcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) | |
| 7 | 6 | nn0zd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℤ ) |
| 8 | 7 | 3adant1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℤ ) |
| 9 | simp2 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 10 | dvdstr | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝐾 ∥ ( 𝑀 gcd 𝑁 ) ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) → 𝐾 ∥ 𝑀 ) ) | |
| 11 | 5 8 9 10 | syl3anc | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 ∥ ( 𝑀 gcd 𝑁 ) ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) → 𝐾 ∥ 𝑀 ) ) |
| 12 | 4 11 | mpan2d | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∥ ( 𝑀 gcd 𝑁 ) → 𝐾 ∥ 𝑀 ) ) |
| 13 | 2 | simprd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) |
| 15 | dvdstr | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 ∥ ( 𝑀 gcd 𝑁 ) ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) → 𝐾 ∥ 𝑁 ) ) | |
| 16 | 8 15 | syld3an2 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 ∥ ( 𝑀 gcd 𝑁 ) ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) → 𝐾 ∥ 𝑁 ) ) |
| 17 | 14 16 | mpan2d | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∥ ( 𝑀 gcd 𝑁 ) → 𝐾 ∥ 𝑁 ) ) |
| 18 | 12 17 | jcad | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∥ ( 𝑀 gcd 𝑁 ) → ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) ) ) |
| 19 | 1 18 | impbid | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) ↔ 𝐾 ∥ ( 𝑀 gcd 𝑁 ) ) ) |