This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Show that M (which will eventually be closely related to the m in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pythagtriplem11.1 | |- M = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| Assertion | pythagtriplem11 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> M e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagtriplem11.1 | |- M = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| 2 | pythagtriplem9 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. NN ) |
|
| 3 | 2 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. ZZ ) |
| 4 | simp3r | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || A ) |
|
| 5 | 2z | |- 2 e. ZZ |
|
| 6 | nnz | |- ( C e. NN -> C e. ZZ ) |
|
| 7 | 6 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. ZZ ) |
| 8 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 9 | 8 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. ZZ ) |
| 10 | 7 9 | zaddcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. ZZ ) |
| 11 | 10 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. ZZ ) |
| 12 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 13 | 12 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) |
| 14 | 13 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. ZZ ) |
| 15 | dvdsgcdb | |- ( ( 2 e. ZZ /\ ( C + B ) e. ZZ /\ A e. ZZ ) -> ( ( 2 || ( C + B ) /\ 2 || A ) <-> 2 || ( ( C + B ) gcd A ) ) ) |
|
| 16 | 5 11 14 15 | mp3an2i | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 || ( C + B ) /\ 2 || A ) <-> 2 || ( ( C + B ) gcd A ) ) ) |
| 17 | 16 | biimpar | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ 2 || ( ( C + B ) gcd A ) ) -> ( 2 || ( C + B ) /\ 2 || A ) ) |
| 18 | 17 | simprd | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ 2 || ( ( C + B ) gcd A ) ) -> 2 || A ) |
| 19 | 4 18 | mtand | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || ( ( C + B ) gcd A ) ) |
| 20 | pythagtriplem7 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) = ( ( C + B ) gcd A ) ) |
|
| 21 | 20 | breq2d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 || ( sqrt ` ( C + B ) ) <-> 2 || ( ( C + B ) gcd A ) ) ) |
| 22 | 19 21 | mtbird | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || ( sqrt ` ( C + B ) ) ) |
| 23 | pythagtriplem8 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) e. NN ) |
|
| 24 | 23 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) e. ZZ ) |
| 25 | 7 9 | zsubcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. ZZ ) |
| 26 | 25 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. ZZ ) |
| 27 | dvdsgcdb | |- ( ( 2 e. ZZ /\ ( C - B ) e. ZZ /\ A e. ZZ ) -> ( ( 2 || ( C - B ) /\ 2 || A ) <-> 2 || ( ( C - B ) gcd A ) ) ) |
|
| 28 | 5 26 14 27 | mp3an2i | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 || ( C - B ) /\ 2 || A ) <-> 2 || ( ( C - B ) gcd A ) ) ) |
| 29 | 28 | biimpar | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ 2 || ( ( C - B ) gcd A ) ) -> ( 2 || ( C - B ) /\ 2 || A ) ) |
| 30 | 29 | simprd | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ 2 || ( ( C - B ) gcd A ) ) -> 2 || A ) |
| 31 | 4 30 | mtand | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || ( ( C - B ) gcd A ) ) |
| 32 | pythagtriplem6 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) = ( ( C - B ) gcd A ) ) |
|
| 33 | 32 | breq2d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 || ( sqrt ` ( C - B ) ) <-> 2 || ( ( C - B ) gcd A ) ) ) |
| 34 | 31 33 | mtbird | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || ( sqrt ` ( C - B ) ) ) |
| 35 | opoe | |- ( ( ( ( sqrt ` ( C + B ) ) e. ZZ /\ -. 2 || ( sqrt ` ( C + B ) ) ) /\ ( ( sqrt ` ( C - B ) ) e. ZZ /\ -. 2 || ( sqrt ` ( C - B ) ) ) ) -> 2 || ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ) |
|
| 36 | 3 22 24 34 35 | syl22anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 2 || ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ) |
| 37 | 2 23 | nnaddcld | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. NN ) |
| 38 | 37 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. ZZ ) |
| 39 | evend2 | |- ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. ZZ -> ( 2 || ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) <-> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) e. ZZ ) ) |
|
| 40 | 38 39 | syl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 || ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) <-> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) e. ZZ ) ) |
| 41 | 36 40 | mpbid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) e. ZZ ) |
| 42 | 2 | nnred | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. RR ) |
| 43 | 23 | nnred | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) e. RR ) |
| 44 | 2 | nngt0d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( sqrt ` ( C + B ) ) ) |
| 45 | 23 | nngt0d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( sqrt ` ( C - B ) ) ) |
| 46 | 42 43 44 45 | addgt0d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) ) |
| 47 | 37 | nnred | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. RR ) |
| 48 | halfpos2 | |- ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. RR -> ( 0 < ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) <-> 0 < ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ) ) |
|
| 49 | 47 48 | syl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 0 < ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) <-> 0 < ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ) ) |
| 50 | 46 49 | mpbid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ) |
| 51 | elnnz | |- ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) e. NN <-> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) e. ZZ /\ 0 < ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) ) ) |
|
| 52 | 41 50 51 | sylanbrc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) e. NN ) |
| 53 | 1 52 | eqeltrid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> M e. NN ) |