This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is even iff its quotient with 2 is an integer. This is a representation of even numbers without using the divides relation, see zeo and zeo2 . (Contributed by AV, 22-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | evend2 | ⊢ ( 𝑁 ∈ ℤ → ( 2 ∥ 𝑁 ↔ ( 𝑁 / 2 ) ∈ ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z | ⊢ 2 ∈ ℤ | |
| 2 | 2ne0 | ⊢ 2 ≠ 0 | |
| 3 | dvdsval2 | ⊢ ( ( 2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 2 ∥ 𝑁 ↔ ( 𝑁 / 2 ) ∈ ℤ ) ) | |
| 4 | 1 2 3 | mp3an12 | ⊢ ( 𝑁 ∈ ℤ → ( 2 ∥ 𝑁 ↔ ( 𝑁 / 2 ) ∈ ℤ ) ) |