This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Splitting for structure powers, part 1: restriction is an onto function. The only actual monoid law we need here is that the base set is nonempty. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwssplit1.y | ⊢ 𝑌 = ( 𝑊 ↑s 𝑈 ) | |
| pwssplit1.z | ⊢ 𝑍 = ( 𝑊 ↑s 𝑉 ) | ||
| pwssplit1.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| pwssplit1.c | ⊢ 𝐶 = ( Base ‘ 𝑍 ) | ||
| pwssplit1.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝑉 ) ) | ||
| Assertion | pwssplit1 | ⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 : 𝐵 –onto→ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwssplit1.y | ⊢ 𝑌 = ( 𝑊 ↑s 𝑈 ) | |
| 2 | pwssplit1.z | ⊢ 𝑍 = ( 𝑊 ↑s 𝑉 ) | |
| 3 | pwssplit1.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 4 | pwssplit1.c | ⊢ 𝐶 = ( Base ‘ 𝑍 ) | |
| 5 | pwssplit1.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝑉 ) ) | |
| 6 | 1 2 3 4 5 | pwssplit0 | ⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 7 | simp1 | ⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑊 ∈ Mnd ) | |
| 8 | simp2 | ⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑈 ∈ 𝑋 ) | |
| 9 | simp3 | ⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑉 ⊆ 𝑈 ) | |
| 10 | 8 9 | ssexd | ⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑉 ∈ V ) |
| 11 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 12 | 2 11 4 | pwselbasb | ⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑉 ∈ V ) → ( 𝑎 ∈ 𝐶 ↔ 𝑎 : 𝑉 ⟶ ( Base ‘ 𝑊 ) ) ) |
| 13 | 7 10 12 | syl2anc | ⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( 𝑎 ∈ 𝐶 ↔ 𝑎 : 𝑉 ⟶ ( Base ‘ 𝑊 ) ) ) |
| 14 | 13 | biimpa | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → 𝑎 : 𝑉 ⟶ ( Base ‘ 𝑊 ) ) |
| 15 | fvex | ⊢ ( 0g ‘ 𝑊 ) ∈ V | |
| 16 | 15 | fconst | ⊢ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) : ( 𝑈 ∖ 𝑉 ) ⟶ { ( 0g ‘ 𝑊 ) } |
| 17 | 16 | a1i | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) : ( 𝑈 ∖ 𝑉 ) ⟶ { ( 0g ‘ 𝑊 ) } ) |
| 18 | simpl1 | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → 𝑊 ∈ Mnd ) | |
| 19 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 20 | 11 19 | mndidcl | ⊢ ( 𝑊 ∈ Mnd → ( 0g ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 21 | 18 20 | syl | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( 0g ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
| 22 | 21 | snssd | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → { ( 0g ‘ 𝑊 ) } ⊆ ( Base ‘ 𝑊 ) ) |
| 23 | 17 22 | fssd | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) : ( 𝑈 ∖ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 24 | disjdif | ⊢ ( 𝑉 ∩ ( 𝑈 ∖ 𝑉 ) ) = ∅ | |
| 25 | 24 | a1i | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( 𝑉 ∩ ( 𝑈 ∖ 𝑉 ) ) = ∅ ) |
| 26 | fun | ⊢ ( ( ( 𝑎 : 𝑉 ⟶ ( Base ‘ 𝑊 ) ∧ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) : ( 𝑈 ∖ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ) ∧ ( 𝑉 ∩ ( 𝑈 ∖ 𝑉 ) ) = ∅ ) → ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) : ( 𝑉 ∪ ( 𝑈 ∖ 𝑉 ) ) ⟶ ( ( Base ‘ 𝑊 ) ∪ ( Base ‘ 𝑊 ) ) ) | |
| 27 | 14 23 25 26 | syl21anc | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) : ( 𝑉 ∪ ( 𝑈 ∖ 𝑉 ) ) ⟶ ( ( Base ‘ 𝑊 ) ∪ ( Base ‘ 𝑊 ) ) ) |
| 28 | simpl3 | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → 𝑉 ⊆ 𝑈 ) | |
| 29 | undif | ⊢ ( 𝑉 ⊆ 𝑈 ↔ ( 𝑉 ∪ ( 𝑈 ∖ 𝑉 ) ) = 𝑈 ) | |
| 30 | 28 29 | sylib | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( 𝑉 ∪ ( 𝑈 ∖ 𝑉 ) ) = 𝑈 ) |
| 31 | unidm | ⊢ ( ( Base ‘ 𝑊 ) ∪ ( Base ‘ 𝑊 ) ) = ( Base ‘ 𝑊 ) | |
| 32 | 31 | a1i | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( Base ‘ 𝑊 ) ∪ ( Base ‘ 𝑊 ) ) = ( Base ‘ 𝑊 ) ) |
| 33 | 30 32 | feq23d | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) : ( 𝑉 ∪ ( 𝑈 ∖ 𝑉 ) ) ⟶ ( ( Base ‘ 𝑊 ) ∪ ( Base ‘ 𝑊 ) ) ↔ ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) : 𝑈 ⟶ ( Base ‘ 𝑊 ) ) ) |
| 34 | 27 33 | mpbid | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) : 𝑈 ⟶ ( Base ‘ 𝑊 ) ) |
| 35 | simpl2 | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → 𝑈 ∈ 𝑋 ) | |
| 36 | 1 11 3 | pwselbasb | ⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ) → ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ∈ 𝐵 ↔ ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) : 𝑈 ⟶ ( Base ‘ 𝑊 ) ) ) |
| 37 | 18 35 36 | syl2anc | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ∈ 𝐵 ↔ ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) : 𝑈 ⟶ ( Base ‘ 𝑊 ) ) ) |
| 38 | 34 37 | mpbird | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ∈ 𝐵 ) |
| 39 | 5 | fvtresfn | ⊢ ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ∈ 𝐵 → ( 𝐹 ‘ ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ) = ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ↾ 𝑉 ) ) |
| 40 | 38 39 | syl | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( 𝐹 ‘ ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ) = ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ↾ 𝑉 ) ) |
| 41 | resundir | ⊢ ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ↾ 𝑉 ) = ( ( 𝑎 ↾ 𝑉 ) ∪ ( ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ↾ 𝑉 ) ) | |
| 42 | ffn | ⊢ ( 𝑎 : 𝑉 ⟶ ( Base ‘ 𝑊 ) → 𝑎 Fn 𝑉 ) | |
| 43 | fnresdm | ⊢ ( 𝑎 Fn 𝑉 → ( 𝑎 ↾ 𝑉 ) = 𝑎 ) | |
| 44 | 14 42 43 | 3syl | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( 𝑎 ↾ 𝑉 ) = 𝑎 ) |
| 45 | disjdifr | ⊢ ( ( 𝑈 ∖ 𝑉 ) ∩ 𝑉 ) = ∅ | |
| 46 | fnconstg | ⊢ ( ( 0g ‘ 𝑊 ) ∈ V → ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) Fn ( 𝑈 ∖ 𝑉 ) ) | |
| 47 | 15 46 | ax-mp | ⊢ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) Fn ( 𝑈 ∖ 𝑉 ) |
| 48 | fnresdisj | ⊢ ( ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) Fn ( 𝑈 ∖ 𝑉 ) → ( ( ( 𝑈 ∖ 𝑉 ) ∩ 𝑉 ) = ∅ ↔ ( ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ↾ 𝑉 ) = ∅ ) ) | |
| 49 | 47 48 | mp1i | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( ( 𝑈 ∖ 𝑉 ) ∩ 𝑉 ) = ∅ ↔ ( ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ↾ 𝑉 ) = ∅ ) ) |
| 50 | 45 49 | mpbii | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ↾ 𝑉 ) = ∅ ) |
| 51 | 44 50 | uneq12d | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( 𝑎 ↾ 𝑉 ) ∪ ( ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ↾ 𝑉 ) ) = ( 𝑎 ∪ ∅ ) ) |
| 52 | 41 51 | eqtrid | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ↾ 𝑉 ) = ( 𝑎 ∪ ∅ ) ) |
| 53 | un0 | ⊢ ( 𝑎 ∪ ∅ ) = 𝑎 | |
| 54 | 52 53 | eqtrdi | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ↾ 𝑉 ) = 𝑎 ) |
| 55 | 40 54 | eqtr2d | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → 𝑎 = ( 𝐹 ‘ ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ) ) |
| 56 | fveq2 | ⊢ ( 𝑏 = ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ) ) | |
| 57 | 56 | rspceeqv | ⊢ ( ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ∈ 𝐵 ∧ 𝑎 = ( 𝐹 ‘ ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ) ) → ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝐹 ‘ 𝑏 ) ) |
| 58 | 38 55 57 | syl2anc | ⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝐹 ‘ 𝑏 ) ) |
| 59 | 58 | ralrimiva | ⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝐹 ‘ 𝑏 ) ) |
| 60 | dffo3 | ⊢ ( 𝐹 : 𝐵 –onto→ 𝐶 ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝐹 ‘ 𝑏 ) ) ) | |
| 61 | 6 59 60 | sylanbrc | ⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 : 𝐵 –onto→ 𝐶 ) |