This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Splitting for structure powers, part 1: restriction is an onto function. The only actual monoid law we need here is that the base set is nonempty. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwssplit1.y | |- Y = ( W ^s U ) |
|
| pwssplit1.z | |- Z = ( W ^s V ) |
||
| pwssplit1.b | |- B = ( Base ` Y ) |
||
| pwssplit1.c | |- C = ( Base ` Z ) |
||
| pwssplit1.f | |- F = ( x e. B |-> ( x |` V ) ) |
||
| Assertion | pwssplit1 | |- ( ( W e. Mnd /\ U e. X /\ V C_ U ) -> F : B -onto-> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwssplit1.y | |- Y = ( W ^s U ) |
|
| 2 | pwssplit1.z | |- Z = ( W ^s V ) |
|
| 3 | pwssplit1.b | |- B = ( Base ` Y ) |
|
| 4 | pwssplit1.c | |- C = ( Base ` Z ) |
|
| 5 | pwssplit1.f | |- F = ( x e. B |-> ( x |` V ) ) |
|
| 6 | 1 2 3 4 5 | pwssplit0 | |- ( ( W e. Mnd /\ U e. X /\ V C_ U ) -> F : B --> C ) |
| 7 | simp1 | |- ( ( W e. Mnd /\ U e. X /\ V C_ U ) -> W e. Mnd ) |
|
| 8 | simp2 | |- ( ( W e. Mnd /\ U e. X /\ V C_ U ) -> U e. X ) |
|
| 9 | simp3 | |- ( ( W e. Mnd /\ U e. X /\ V C_ U ) -> V C_ U ) |
|
| 10 | 8 9 | ssexd | |- ( ( W e. Mnd /\ U e. X /\ V C_ U ) -> V e. _V ) |
| 11 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 12 | 2 11 4 | pwselbasb | |- ( ( W e. Mnd /\ V e. _V ) -> ( a e. C <-> a : V --> ( Base ` W ) ) ) |
| 13 | 7 10 12 | syl2anc | |- ( ( W e. Mnd /\ U e. X /\ V C_ U ) -> ( a e. C <-> a : V --> ( Base ` W ) ) ) |
| 14 | 13 | biimpa | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> a : V --> ( Base ` W ) ) |
| 15 | fvex | |- ( 0g ` W ) e. _V |
|
| 16 | 15 | fconst | |- ( ( U \ V ) X. { ( 0g ` W ) } ) : ( U \ V ) --> { ( 0g ` W ) } |
| 17 | 16 | a1i | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( ( U \ V ) X. { ( 0g ` W ) } ) : ( U \ V ) --> { ( 0g ` W ) } ) |
| 18 | simpl1 | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> W e. Mnd ) |
|
| 19 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 20 | 11 19 | mndidcl | |- ( W e. Mnd -> ( 0g ` W ) e. ( Base ` W ) ) |
| 21 | 18 20 | syl | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( 0g ` W ) e. ( Base ` W ) ) |
| 22 | 21 | snssd | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> { ( 0g ` W ) } C_ ( Base ` W ) ) |
| 23 | 17 22 | fssd | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( ( U \ V ) X. { ( 0g ` W ) } ) : ( U \ V ) --> ( Base ` W ) ) |
| 24 | disjdif | |- ( V i^i ( U \ V ) ) = (/) |
|
| 25 | 24 | a1i | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( V i^i ( U \ V ) ) = (/) ) |
| 26 | fun | |- ( ( ( a : V --> ( Base ` W ) /\ ( ( U \ V ) X. { ( 0g ` W ) } ) : ( U \ V ) --> ( Base ` W ) ) /\ ( V i^i ( U \ V ) ) = (/) ) -> ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) : ( V u. ( U \ V ) ) --> ( ( Base ` W ) u. ( Base ` W ) ) ) |
|
| 27 | 14 23 25 26 | syl21anc | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) : ( V u. ( U \ V ) ) --> ( ( Base ` W ) u. ( Base ` W ) ) ) |
| 28 | simpl3 | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> V C_ U ) |
|
| 29 | undif | |- ( V C_ U <-> ( V u. ( U \ V ) ) = U ) |
|
| 30 | 28 29 | sylib | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( V u. ( U \ V ) ) = U ) |
| 31 | unidm | |- ( ( Base ` W ) u. ( Base ` W ) ) = ( Base ` W ) |
|
| 32 | 31 | a1i | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( ( Base ` W ) u. ( Base ` W ) ) = ( Base ` W ) ) |
| 33 | 30 32 | feq23d | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) : ( V u. ( U \ V ) ) --> ( ( Base ` W ) u. ( Base ` W ) ) <-> ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) : U --> ( Base ` W ) ) ) |
| 34 | 27 33 | mpbid | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) : U --> ( Base ` W ) ) |
| 35 | simpl2 | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> U e. X ) |
|
| 36 | 1 11 3 | pwselbasb | |- ( ( W e. Mnd /\ U e. X ) -> ( ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) e. B <-> ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) : U --> ( Base ` W ) ) ) |
| 37 | 18 35 36 | syl2anc | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) e. B <-> ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) : U --> ( Base ` W ) ) ) |
| 38 | 34 37 | mpbird | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) e. B ) |
| 39 | 5 | fvtresfn | |- ( ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) e. B -> ( F ` ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) ) = ( ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) |` V ) ) |
| 40 | 38 39 | syl | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( F ` ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) ) = ( ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) |` V ) ) |
| 41 | resundir | |- ( ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) |` V ) = ( ( a |` V ) u. ( ( ( U \ V ) X. { ( 0g ` W ) } ) |` V ) ) |
|
| 42 | ffn | |- ( a : V --> ( Base ` W ) -> a Fn V ) |
|
| 43 | fnresdm | |- ( a Fn V -> ( a |` V ) = a ) |
|
| 44 | 14 42 43 | 3syl | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( a |` V ) = a ) |
| 45 | disjdifr | |- ( ( U \ V ) i^i V ) = (/) |
|
| 46 | fnconstg | |- ( ( 0g ` W ) e. _V -> ( ( U \ V ) X. { ( 0g ` W ) } ) Fn ( U \ V ) ) |
|
| 47 | 15 46 | ax-mp | |- ( ( U \ V ) X. { ( 0g ` W ) } ) Fn ( U \ V ) |
| 48 | fnresdisj | |- ( ( ( U \ V ) X. { ( 0g ` W ) } ) Fn ( U \ V ) -> ( ( ( U \ V ) i^i V ) = (/) <-> ( ( ( U \ V ) X. { ( 0g ` W ) } ) |` V ) = (/) ) ) |
|
| 49 | 47 48 | mp1i | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( ( ( U \ V ) i^i V ) = (/) <-> ( ( ( U \ V ) X. { ( 0g ` W ) } ) |` V ) = (/) ) ) |
| 50 | 45 49 | mpbii | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( ( ( U \ V ) X. { ( 0g ` W ) } ) |` V ) = (/) ) |
| 51 | 44 50 | uneq12d | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( ( a |` V ) u. ( ( ( U \ V ) X. { ( 0g ` W ) } ) |` V ) ) = ( a u. (/) ) ) |
| 52 | 41 51 | eqtrid | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) |` V ) = ( a u. (/) ) ) |
| 53 | un0 | |- ( a u. (/) ) = a |
|
| 54 | 52 53 | eqtrdi | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> ( ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) |` V ) = a ) |
| 55 | 40 54 | eqtr2d | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> a = ( F ` ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) ) ) |
| 56 | fveq2 | |- ( b = ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) -> ( F ` b ) = ( F ` ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) ) ) |
|
| 57 | 56 | rspceeqv | |- ( ( ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) e. B /\ a = ( F ` ( a u. ( ( U \ V ) X. { ( 0g ` W ) } ) ) ) ) -> E. b e. B a = ( F ` b ) ) |
| 58 | 38 55 57 | syl2anc | |- ( ( ( W e. Mnd /\ U e. X /\ V C_ U ) /\ a e. C ) -> E. b e. B a = ( F ` b ) ) |
| 59 | 58 | ralrimiva | |- ( ( W e. Mnd /\ U e. X /\ V C_ U ) -> A. a e. C E. b e. B a = ( F ` b ) ) |
| 60 | dffo3 | |- ( F : B -onto-> C <-> ( F : B --> C /\ A. a e. C E. b e. B a = ( F ` b ) ) ) |
|
| 61 | 6 59 60 | sylanbrc | |- ( ( W e. Mnd /\ U e. X /\ V C_ U ) -> F : B -onto-> C ) |