This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Diagonal monoid homomorphism into a structure power. (Contributed by Stefan O'Rear, 12-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsdiagmhm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsdiagmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| pwsdiagmhm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐼 × { 𝑥 } ) ) | ||
| Assertion | pwsdiagmhm | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 MndHom 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsdiagmhm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsdiagmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | pwsdiagmhm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐼 × { 𝑥 } ) ) | |
| 4 | simpl | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → 𝑅 ∈ Mnd ) | |
| 5 | 1 | pwsmnd | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → 𝑌 ∈ Mnd ) |
| 6 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 7 | 3 | fdiagfn | ⊢ ( ( 𝐵 ∈ V ∧ 𝐼 ∈ 𝑊 ) → 𝐹 : 𝐵 ⟶ ( 𝐵 ↑m 𝐼 ) ) |
| 8 | 6 7 | mpan | ⊢ ( 𝐼 ∈ 𝑊 → 𝐹 : 𝐵 ⟶ ( 𝐵 ↑m 𝐼 ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → 𝐹 : 𝐵 ⟶ ( 𝐵 ↑m 𝐼 ) ) |
| 10 | 1 2 | pwsbas | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → ( 𝐵 ↑m 𝐼 ) = ( Base ‘ 𝑌 ) ) |
| 11 | 10 | feq3d | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → ( 𝐹 : 𝐵 ⟶ ( 𝐵 ↑m 𝐼 ) ↔ 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑌 ) ) ) |
| 12 | 9 11 | mpbid | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑌 ) ) |
| 13 | simplr | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑊 ) | |
| 14 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 15 | 2 14 | mndcl | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
| 16 | 15 | 3expb | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
| 17 | 16 | adantlr | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
| 18 | 3 | fvdiagfn | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐼 × { ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) } ) ) |
| 19 | 13 17 18 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝐼 × { ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) } ) ) |
| 20 | 3 | fvdiagfn | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐼 × { 𝑎 } ) ) |
| 21 | 3 | fvdiagfn | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐼 × { 𝑏 } ) ) |
| 22 | 20 21 | oveqan12d | ⊢ ( ( ( 𝐼 ∈ 𝑊 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑊 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐼 × { 𝑎 } ) ( +g ‘ 𝑌 ) ( 𝐼 × { 𝑏 } ) ) ) |
| 23 | 22 | anandis | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐼 × { 𝑎 } ) ( +g ‘ 𝑌 ) ( 𝐼 × { 𝑏 } ) ) ) |
| 24 | 23 | adantll | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐼 × { 𝑎 } ) ( +g ‘ 𝑌 ) ( 𝐼 × { 𝑏 } ) ) ) |
| 25 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 26 | simpll | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑅 ∈ Mnd ) | |
| 27 | 1 2 25 | pwsdiagel | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝐼 × { 𝑎 } ) ∈ ( Base ‘ 𝑌 ) ) |
| 28 | 27 | adantrr | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐼 × { 𝑎 } ) ∈ ( Base ‘ 𝑌 ) ) |
| 29 | 1 2 25 | pwsdiagel | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐼 × { 𝑏 } ) ∈ ( Base ‘ 𝑌 ) ) |
| 30 | 29 | adantrl | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐼 × { 𝑏 } ) ∈ ( Base ‘ 𝑌 ) ) |
| 31 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 32 | 1 25 26 13 28 30 14 31 | pwsplusgval | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝐼 × { 𝑎 } ) ( +g ‘ 𝑌 ) ( 𝐼 × { 𝑏 } ) ) = ( ( 𝐼 × { 𝑎 } ) ∘f ( +g ‘ 𝑅 ) ( 𝐼 × { 𝑏 } ) ) ) |
| 33 | id | ⊢ ( 𝐼 ∈ 𝑊 → 𝐼 ∈ 𝑊 ) | |
| 34 | vex | ⊢ 𝑎 ∈ V | |
| 35 | 34 | a1i | ⊢ ( 𝐼 ∈ 𝑊 → 𝑎 ∈ V ) |
| 36 | vex | ⊢ 𝑏 ∈ V | |
| 37 | 36 | a1i | ⊢ ( 𝐼 ∈ 𝑊 → 𝑏 ∈ V ) |
| 38 | 33 35 37 | ofc12 | ⊢ ( 𝐼 ∈ 𝑊 → ( ( 𝐼 × { 𝑎 } ) ∘f ( +g ‘ 𝑅 ) ( 𝐼 × { 𝑏 } ) ) = ( 𝐼 × { ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) } ) ) |
| 39 | 38 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝐼 × { 𝑎 } ) ∘f ( +g ‘ 𝑅 ) ( 𝐼 × { 𝑏 } ) ) = ( 𝐼 × { ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) } ) ) |
| 40 | 24 32 39 | 3eqtrd | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) ) = ( 𝐼 × { ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) } ) ) |
| 41 | 19 40 | eqtr4d | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 42 | 41 | ralrimivva | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 43 | simpr | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → 𝐼 ∈ 𝑊 ) | |
| 44 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 45 | 2 44 | mndidcl | ⊢ ( 𝑅 ∈ Mnd → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 46 | 45 | adantr | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 47 | 3 | fvdiagfn | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 𝐼 × { ( 0g ‘ 𝑅 ) } ) ) |
| 48 | 43 46 47 | syl2anc | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 𝐼 × { ( 0g ‘ 𝑅 ) } ) ) |
| 49 | 1 44 | pws0g | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → ( 𝐼 × { ( 0g ‘ 𝑅 ) } ) = ( 0g ‘ 𝑌 ) ) |
| 50 | 48 49 | eqtrd | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑌 ) ) |
| 51 | 12 42 50 | 3jca | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑌 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑌 ) ) ) |
| 52 | eqid | ⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) | |
| 53 | 2 25 14 31 44 52 | ismhm | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑌 ) ↔ ( ( 𝑅 ∈ Mnd ∧ 𝑌 ∈ Mnd ) ∧ ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑌 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑌 ) ) ) ) |
| 54 | 4 5 51 53 | syl21anbrc | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 MndHom 𝑌 ) ) |