This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right composition with a function on the index sets yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsco1mhm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐴 ) | |
| pwsco1mhm.z | ⊢ 𝑍 = ( 𝑅 ↑s 𝐵 ) | ||
| pwsco1mhm.c | ⊢ 𝐶 = ( Base ‘ 𝑍 ) | ||
| pwsco1mhm.r | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) | ||
| pwsco1mhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| pwsco1mhm.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| pwsco1mhm.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| Assertion | pwsco1mhm | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 MndHom 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsco1mhm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐴 ) | |
| 2 | pwsco1mhm.z | ⊢ 𝑍 = ( 𝑅 ↑s 𝐵 ) | |
| 3 | pwsco1mhm.c | ⊢ 𝐶 = ( Base ‘ 𝑍 ) | |
| 4 | pwsco1mhm.r | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) | |
| 5 | pwsco1mhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | pwsco1mhm.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 7 | pwsco1mhm.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | 2 | pwsmnd | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐵 ∈ 𝑊 ) → 𝑍 ∈ Mnd ) |
| 9 | 4 6 8 | syl2anc | ⊢ ( 𝜑 → 𝑍 ∈ Mnd ) |
| 10 | 1 | pwsmnd | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → 𝑌 ∈ Mnd ) |
| 11 | 4 5 10 | syl2anc | ⊢ ( 𝜑 → 𝑌 ∈ Mnd ) |
| 12 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 13 | 2 12 3 | pwselbasb | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐵 ∈ 𝑊 ) → ( 𝑔 ∈ 𝐶 ↔ 𝑔 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 14 | 4 6 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↔ 𝑔 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 15 | 14 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → 𝑔 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 16 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 17 | fco | ⊢ ( ( 𝑔 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑔 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) | |
| 18 | 15 16 17 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → ( 𝑔 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
| 19 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 20 | 1 12 19 | pwselbasb | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑔 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ↔ ( 𝑔 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 21 | 4 5 20 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑔 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ↔ ( 𝑔 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → ( ( 𝑔 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ↔ ( 𝑔 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 23 | 18 22 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → ( 𝑔 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ) |
| 24 | 23 | fmpttd | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) : 𝐶 ⟶ ( Base ‘ 𝑌 ) ) |
| 25 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐴 ∈ 𝑉 ) |
| 26 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ V ) | |
| 27 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ V ) | |
| 28 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 29 | 28 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
| 30 | 28 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐹 = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 31 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑅 ∈ Mnd ) |
| 32 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐵 ∈ 𝑊 ) |
| 33 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 ∈ 𝐶 ) | |
| 34 | 2 12 3 31 32 33 | pwselbas | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 35 | 34 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 = ( 𝑤 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝑤 ) ) ) |
| 36 | fveq2 | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑧 ) → ( 𝑥 ‘ 𝑤 ) = ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 37 | 29 30 35 36 | fmptco | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ∘ 𝐹 ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 38 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 ∈ 𝐶 ) | |
| 39 | 2 12 3 31 32 38 | pwselbas | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 40 | 39 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 = ( 𝑤 ∈ 𝐵 ↦ ( 𝑦 ‘ 𝑤 ) ) ) |
| 41 | fveq2 | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑧 ) → ( 𝑦 ‘ 𝑤 ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 42 | 29 30 40 41 | fmptco | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑦 ∘ 𝐹 ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 43 | 25 26 27 37 42 | offval2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑥 ∘ 𝐹 ) ∘f ( +g ‘ 𝑅 ) ( 𝑦 ∘ 𝐹 ) ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 44 | fco | ⊢ ( ( 𝑥 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑥 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) | |
| 45 | 34 28 44 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
| 46 | 1 12 19 | pwselbasb | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑥 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ↔ ( 𝑥 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 47 | 31 25 46 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑥 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ↔ ( 𝑥 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 48 | 45 47 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ) |
| 49 | fco | ⊢ ( ( 𝑦 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑦 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) | |
| 50 | 39 28 49 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑦 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
| 51 | 1 12 19 | pwselbasb | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑦 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ↔ ( 𝑦 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 52 | 31 25 51 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑦 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ↔ ( 𝑦 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) |
| 53 | 50 52 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑦 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ) |
| 54 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 55 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 56 | 1 19 31 25 48 53 54 55 | pwsplusgval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑥 ∘ 𝐹 ) ( +g ‘ 𝑌 ) ( 𝑦 ∘ 𝐹 ) ) = ( ( 𝑥 ∘ 𝐹 ) ∘f ( +g ‘ 𝑅 ) ( 𝑦 ∘ 𝐹 ) ) ) |
| 57 | eqid | ⊢ ( +g ‘ 𝑍 ) = ( +g ‘ 𝑍 ) | |
| 58 | 2 3 31 32 33 38 54 57 | pwsplusgval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 59 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑥 ‘ 𝑤 ) ∈ V ) | |
| 60 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑦 ‘ 𝑤 ) ∈ V ) | |
| 61 | 32 59 60 35 40 | offval2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑤 ∈ 𝐵 ↦ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 62 | 58 61 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) = ( 𝑤 ∈ 𝐵 ↦ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 63 | 36 41 | oveq12d | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) = ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 64 | 29 30 62 63 | fmptco | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∘ 𝐹 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 65 | 43 56 64 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∘ 𝐹 ) = ( ( 𝑥 ∘ 𝐹 ) ( +g ‘ 𝑌 ) ( 𝑦 ∘ 𝐹 ) ) ) |
| 66 | eqid | ⊢ ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) = ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) | |
| 67 | coeq1 | ⊢ ( 𝑔 = ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) → ( 𝑔 ∘ 𝐹 ) = ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∘ 𝐹 ) ) | |
| 68 | 3 57 | mndcl | ⊢ ( ( 𝑍 ∈ Mnd ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∈ 𝐶 ) |
| 69 | 68 | 3expb | ⊢ ( ( 𝑍 ∈ Mnd ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∈ 𝐶 ) |
| 70 | 9 69 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∈ 𝐶 ) |
| 71 | ovex | ⊢ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∈ V | |
| 72 | 7 5 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 73 | 72 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐹 ∈ V ) |
| 74 | coexg | ⊢ ( ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∈ V ∧ 𝐹 ∈ V ) → ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∘ 𝐹 ) ∈ V ) | |
| 75 | 71 73 74 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∘ 𝐹 ) ∈ V ) |
| 76 | 66 67 70 75 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∘ 𝐹 ) ) |
| 77 | coeq1 | ⊢ ( 𝑔 = 𝑥 → ( 𝑔 ∘ 𝐹 ) = ( 𝑥 ∘ 𝐹 ) ) | |
| 78 | coexg | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝐹 ∈ V ) → ( 𝑥 ∘ 𝐹 ) ∈ V ) | |
| 79 | 33 73 78 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ∘ 𝐹 ) ∈ V ) |
| 80 | 66 77 33 79 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑥 ) = ( 𝑥 ∘ 𝐹 ) ) |
| 81 | coeq1 | ⊢ ( 𝑔 = 𝑦 → ( 𝑔 ∘ 𝐹 ) = ( 𝑦 ∘ 𝐹 ) ) | |
| 82 | coexg | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝐹 ∈ V ) → ( 𝑦 ∘ 𝐹 ) ∈ V ) | |
| 83 | 38 73 82 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑦 ∘ 𝐹 ) ∈ V ) |
| 84 | 66 81 38 83 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑦 ) = ( 𝑦 ∘ 𝐹 ) ) |
| 85 | 80 84 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑥 ) ( +g ‘ 𝑌 ) ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑦 ) ) = ( ( 𝑥 ∘ 𝐹 ) ( +g ‘ 𝑌 ) ( 𝑦 ∘ 𝐹 ) ) ) |
| 86 | 65 76 85 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑥 ) ( +g ‘ 𝑌 ) ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑦 ) ) ) |
| 87 | 86 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑥 ) ( +g ‘ 𝑌 ) ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑦 ) ) ) |
| 88 | coeq1 | ⊢ ( 𝑔 = ( 0g ‘ 𝑍 ) → ( 𝑔 ∘ 𝐹 ) = ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) ) | |
| 89 | eqid | ⊢ ( 0g ‘ 𝑍 ) = ( 0g ‘ 𝑍 ) | |
| 90 | 3 89 | mndidcl | ⊢ ( 𝑍 ∈ Mnd → ( 0g ‘ 𝑍 ) ∈ 𝐶 ) |
| 91 | 9 90 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑍 ) ∈ 𝐶 ) |
| 92 | coexg | ⊢ ( ( ( 0g ‘ 𝑍 ) ∈ 𝐶 ∧ 𝐹 ∈ V ) → ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) ∈ V ) | |
| 93 | 91 72 92 | syl2anc | ⊢ ( 𝜑 → ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) ∈ V ) |
| 94 | 66 88 91 93 | fvmptd3 | ⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 0g ‘ 𝑍 ) ) = ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) ) |
| 95 | 2 12 3 4 6 91 | pwselbas | ⊢ ( 𝜑 → ( 0g ‘ 𝑍 ) : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 96 | fco | ⊢ ( ( ( 0g ‘ 𝑍 ) : 𝐵 ⟶ ( Base ‘ 𝑅 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) | |
| 97 | 95 7 96 | syl2anc | ⊢ ( 𝜑 → ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
| 98 | 97 | ffnd | ⊢ ( 𝜑 → ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) Fn 𝐴 ) |
| 99 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) | |
| 100 | fnconstg | ⊢ ( ( 0g ‘ 𝑅 ) ∈ V → ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) Fn 𝐴 ) | |
| 101 | 99 100 | syl | ⊢ ( 𝜑 → ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) Fn 𝐴 ) |
| 102 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 103 | 2 102 | pws0g | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 × { ( 0g ‘ 𝑅 ) } ) = ( 0g ‘ 𝑍 ) ) |
| 104 | 4 6 103 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 × { ( 0g ‘ 𝑅 ) } ) = ( 0g ‘ 𝑍 ) ) |
| 105 | 104 | fveq1d | ⊢ ( 𝜑 → ( ( 𝐵 × { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 0g ‘ 𝑍 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 106 | 105 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 × { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 0g ‘ 𝑍 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 107 | fvex | ⊢ ( 0g ‘ 𝑅 ) ∈ V | |
| 108 | 7 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 109 | fvconst2g | ⊢ ( ( ( 0g ‘ 𝑅 ) ∈ V ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ( ( 𝐵 × { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 0g ‘ 𝑅 ) ) | |
| 110 | 107 108 109 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 × { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 0g ‘ 𝑅 ) ) |
| 111 | 106 110 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 0g ‘ 𝑍 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 0g ‘ 𝑅 ) ) |
| 112 | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 0g ‘ 𝑍 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 113 | 7 112 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 0g ‘ 𝑍 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 114 | fvconst2g | ⊢ ( ( ( 0g ‘ 𝑅 ) ∈ V ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) | |
| 115 | 99 114 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
| 116 | 111 113 115 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝑥 ) ) |
| 117 | 98 101 116 | eqfnfvd | ⊢ ( 𝜑 → ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) = ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) ) |
| 118 | 1 102 | pws0g | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) = ( 0g ‘ 𝑌 ) ) |
| 119 | 4 5 118 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) = ( 0g ‘ 𝑌 ) ) |
| 120 | 94 117 119 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 0g ‘ 𝑍 ) ) = ( 0g ‘ 𝑌 ) ) |
| 121 | 24 87 120 | 3jca | ⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) : 𝐶 ⟶ ( Base ‘ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑥 ) ( +g ‘ 𝑌 ) ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑦 ) ) ∧ ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 0g ‘ 𝑍 ) ) = ( 0g ‘ 𝑌 ) ) ) |
| 122 | eqid | ⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) | |
| 123 | 3 19 57 55 89 122 | ismhm | ⊢ ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 MndHom 𝑌 ) ↔ ( ( 𝑍 ∈ Mnd ∧ 𝑌 ∈ Mnd ) ∧ ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) : 𝐶 ⟶ ( Base ‘ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑥 ) ( +g ‘ 𝑌 ) ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑦 ) ) ∧ ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 0g ‘ 𝑍 ) ) = ( 0g ‘ 𝑌 ) ) ) ) |
| 124 | 9 11 121 123 | syl21anbrc | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 MndHom 𝑌 ) ) |