This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fdiagfn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐼 × { 𝑥 } ) ) | |
| Assertion | fdiagfn | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐹 : 𝐵 ⟶ ( 𝐵 ↑m 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdiagfn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐼 × { 𝑥 } ) ) | |
| 2 | fconst6g | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝐼 × { 𝑥 } ) : 𝐼 ⟶ 𝐵 ) | |
| 3 | 2 | adantl | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐼 × { 𝑥 } ) : 𝐼 ⟶ 𝐵 ) |
| 4 | elmapg | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( ( 𝐼 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐼 ) ↔ ( 𝐼 × { 𝑥 } ) : 𝐼 ⟶ 𝐵 ) ) | |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐼 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐼 ) ↔ ( 𝐼 × { 𝑥 } ) : 𝐼 ⟶ 𝐵 ) ) |
| 6 | 3 5 | mpbird | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐼 × { 𝑥 } ) ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 7 | 6 1 | fmptd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐹 : 𝐵 ⟶ ( 𝐵 ↑m 𝐼 ) ) |