This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of addition in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsplusgval.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsplusgval.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| pwsplusgval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | ||
| pwsplusgval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| pwsplusgval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| pwsplusgval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| pwsplusgval.a | ⊢ + = ( +g ‘ 𝑅 ) | ||
| pwsplusgval.p | ⊢ ✚ = ( +g ‘ 𝑌 ) | ||
| Assertion | pwsplusgval | ⊢ ( 𝜑 → ( 𝐹 ✚ 𝐺 ) = ( 𝐹 ∘f + 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsplusgval.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsplusgval.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | pwsplusgval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
| 4 | pwsplusgval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | pwsplusgval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 6 | pwsplusgval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 7 | pwsplusgval.a | ⊢ + = ( +g ‘ 𝑅 ) | |
| 8 | pwsplusgval.p | ⊢ ✚ = ( +g ‘ 𝑌 ) | |
| 9 | eqid | ⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) | |
| 10 | eqid | ⊢ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) | |
| 11 | fvexd | ⊢ ( 𝜑 → ( Scalar ‘ 𝑅 ) ∈ V ) | |
| 12 | fnconstg | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝐼 × { 𝑅 } ) Fn 𝐼 ) | |
| 13 | 3 12 | syl | ⊢ ( 𝜑 → ( 𝐼 × { 𝑅 } ) Fn 𝐼 ) |
| 14 | eqid | ⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) | |
| 15 | 1 14 | pwsval | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 16 | 3 4 15 | syl2anc | ⊢ ( 𝜑 → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 17 | 16 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 18 | 2 17 | eqtrid | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 19 | 5 18 | eleqtrd | ⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 20 | 6 18 | eleqtrd | ⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 21 | eqid | ⊢ ( +g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( +g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) | |
| 22 | 9 10 11 4 13 19 20 21 | prdsplusgval | ⊢ ( 𝜑 → ( 𝐹 ( +g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 23 | fvconst2g | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) | |
| 24 | 3 23 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( +g ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( +g ‘ 𝑅 ) ) |
| 26 | 25 7 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( +g ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = + ) |
| 27 | 26 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) |
| 28 | 27 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 29 | 22 28 | eqtrd | ⊢ ( 𝜑 → ( 𝐹 ( +g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 30 | 16 | fveq2d | ⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 31 | 8 30 | eqtrid | ⊢ ( 𝜑 → ✚ = ( +g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 32 | 31 | oveqd | ⊢ ( 𝜑 → ( 𝐹 ✚ 𝐺 ) = ( 𝐹 ( +g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) 𝐺 ) ) |
| 33 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ V ) | |
| 34 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ V ) | |
| 35 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 36 | 1 35 2 3 4 5 | pwselbas | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 37 | 36 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 38 | 1 35 2 3 4 6 | pwselbas | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 39 | 38 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 40 | 4 33 34 37 39 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 41 | 29 32 40 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐹 ✚ 𝐺 ) = ( 𝐹 ∘f + 𝐺 ) ) |