This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Diagonal monoid homomorphism into a structure power. (Contributed by Stefan O'Rear, 12-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsdiagmhm.y | |- Y = ( R ^s I ) |
|
| pwsdiagmhm.b | |- B = ( Base ` R ) |
||
| pwsdiagmhm.f | |- F = ( x e. B |-> ( I X. { x } ) ) |
||
| Assertion | pwsdiagmhm | |- ( ( R e. Mnd /\ I e. W ) -> F e. ( R MndHom Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsdiagmhm.y | |- Y = ( R ^s I ) |
|
| 2 | pwsdiagmhm.b | |- B = ( Base ` R ) |
|
| 3 | pwsdiagmhm.f | |- F = ( x e. B |-> ( I X. { x } ) ) |
|
| 4 | simpl | |- ( ( R e. Mnd /\ I e. W ) -> R e. Mnd ) |
|
| 5 | 1 | pwsmnd | |- ( ( R e. Mnd /\ I e. W ) -> Y e. Mnd ) |
| 6 | 2 | fvexi | |- B e. _V |
| 7 | 3 | fdiagfn | |- ( ( B e. _V /\ I e. W ) -> F : B --> ( B ^m I ) ) |
| 8 | 6 7 | mpan | |- ( I e. W -> F : B --> ( B ^m I ) ) |
| 9 | 8 | adantl | |- ( ( R e. Mnd /\ I e. W ) -> F : B --> ( B ^m I ) ) |
| 10 | 1 2 | pwsbas | |- ( ( R e. Mnd /\ I e. W ) -> ( B ^m I ) = ( Base ` Y ) ) |
| 11 | 10 | feq3d | |- ( ( R e. Mnd /\ I e. W ) -> ( F : B --> ( B ^m I ) <-> F : B --> ( Base ` Y ) ) ) |
| 12 | 9 11 | mpbid | |- ( ( R e. Mnd /\ I e. W ) -> F : B --> ( Base ` Y ) ) |
| 13 | simplr | |- ( ( ( R e. Mnd /\ I e. W ) /\ ( a e. B /\ b e. B ) ) -> I e. W ) |
|
| 14 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 15 | 2 14 | mndcl | |- ( ( R e. Mnd /\ a e. B /\ b e. B ) -> ( a ( +g ` R ) b ) e. B ) |
| 16 | 15 | 3expb | |- ( ( R e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` R ) b ) e. B ) |
| 17 | 16 | adantlr | |- ( ( ( R e. Mnd /\ I e. W ) /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` R ) b ) e. B ) |
| 18 | 3 | fvdiagfn | |- ( ( I e. W /\ ( a ( +g ` R ) b ) e. B ) -> ( F ` ( a ( +g ` R ) b ) ) = ( I X. { ( a ( +g ` R ) b ) } ) ) |
| 19 | 13 17 18 | syl2anc | |- ( ( ( R e. Mnd /\ I e. W ) /\ ( a e. B /\ b e. B ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( I X. { ( a ( +g ` R ) b ) } ) ) |
| 20 | 3 | fvdiagfn | |- ( ( I e. W /\ a e. B ) -> ( F ` a ) = ( I X. { a } ) ) |
| 21 | 3 | fvdiagfn | |- ( ( I e. W /\ b e. B ) -> ( F ` b ) = ( I X. { b } ) ) |
| 22 | 20 21 | oveqan12d | |- ( ( ( I e. W /\ a e. B ) /\ ( I e. W /\ b e. B ) ) -> ( ( F ` a ) ( +g ` Y ) ( F ` b ) ) = ( ( I X. { a } ) ( +g ` Y ) ( I X. { b } ) ) ) |
| 23 | 22 | anandis | |- ( ( I e. W /\ ( a e. B /\ b e. B ) ) -> ( ( F ` a ) ( +g ` Y ) ( F ` b ) ) = ( ( I X. { a } ) ( +g ` Y ) ( I X. { b } ) ) ) |
| 24 | 23 | adantll | |- ( ( ( R e. Mnd /\ I e. W ) /\ ( a e. B /\ b e. B ) ) -> ( ( F ` a ) ( +g ` Y ) ( F ` b ) ) = ( ( I X. { a } ) ( +g ` Y ) ( I X. { b } ) ) ) |
| 25 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 26 | simpll | |- ( ( ( R e. Mnd /\ I e. W ) /\ ( a e. B /\ b e. B ) ) -> R e. Mnd ) |
|
| 27 | 1 2 25 | pwsdiagel | |- ( ( ( R e. Mnd /\ I e. W ) /\ a e. B ) -> ( I X. { a } ) e. ( Base ` Y ) ) |
| 28 | 27 | adantrr | |- ( ( ( R e. Mnd /\ I e. W ) /\ ( a e. B /\ b e. B ) ) -> ( I X. { a } ) e. ( Base ` Y ) ) |
| 29 | 1 2 25 | pwsdiagel | |- ( ( ( R e. Mnd /\ I e. W ) /\ b e. B ) -> ( I X. { b } ) e. ( Base ` Y ) ) |
| 30 | 29 | adantrl | |- ( ( ( R e. Mnd /\ I e. W ) /\ ( a e. B /\ b e. B ) ) -> ( I X. { b } ) e. ( Base ` Y ) ) |
| 31 | eqid | |- ( +g ` Y ) = ( +g ` Y ) |
|
| 32 | 1 25 26 13 28 30 14 31 | pwsplusgval | |- ( ( ( R e. Mnd /\ I e. W ) /\ ( a e. B /\ b e. B ) ) -> ( ( I X. { a } ) ( +g ` Y ) ( I X. { b } ) ) = ( ( I X. { a } ) oF ( +g ` R ) ( I X. { b } ) ) ) |
| 33 | id | |- ( I e. W -> I e. W ) |
|
| 34 | vex | |- a e. _V |
|
| 35 | 34 | a1i | |- ( I e. W -> a e. _V ) |
| 36 | vex | |- b e. _V |
|
| 37 | 36 | a1i | |- ( I e. W -> b e. _V ) |
| 38 | 33 35 37 | ofc12 | |- ( I e. W -> ( ( I X. { a } ) oF ( +g ` R ) ( I X. { b } ) ) = ( I X. { ( a ( +g ` R ) b ) } ) ) |
| 39 | 38 | ad2antlr | |- ( ( ( R e. Mnd /\ I e. W ) /\ ( a e. B /\ b e. B ) ) -> ( ( I X. { a } ) oF ( +g ` R ) ( I X. { b } ) ) = ( I X. { ( a ( +g ` R ) b ) } ) ) |
| 40 | 24 32 39 | 3eqtrd | |- ( ( ( R e. Mnd /\ I e. W ) /\ ( a e. B /\ b e. B ) ) -> ( ( F ` a ) ( +g ` Y ) ( F ` b ) ) = ( I X. { ( a ( +g ` R ) b ) } ) ) |
| 41 | 19 40 | eqtr4d | |- ( ( ( R e. Mnd /\ I e. W ) /\ ( a e. B /\ b e. B ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( ( F ` a ) ( +g ` Y ) ( F ` b ) ) ) |
| 42 | 41 | ralrimivva | |- ( ( R e. Mnd /\ I e. W ) -> A. a e. B A. b e. B ( F ` ( a ( +g ` R ) b ) ) = ( ( F ` a ) ( +g ` Y ) ( F ` b ) ) ) |
| 43 | simpr | |- ( ( R e. Mnd /\ I e. W ) -> I e. W ) |
|
| 44 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 45 | 2 44 | mndidcl | |- ( R e. Mnd -> ( 0g ` R ) e. B ) |
| 46 | 45 | adantr | |- ( ( R e. Mnd /\ I e. W ) -> ( 0g ` R ) e. B ) |
| 47 | 3 | fvdiagfn | |- ( ( I e. W /\ ( 0g ` R ) e. B ) -> ( F ` ( 0g ` R ) ) = ( I X. { ( 0g ` R ) } ) ) |
| 48 | 43 46 47 | syl2anc | |- ( ( R e. Mnd /\ I e. W ) -> ( F ` ( 0g ` R ) ) = ( I X. { ( 0g ` R ) } ) ) |
| 49 | 1 44 | pws0g | |- ( ( R e. Mnd /\ I e. W ) -> ( I X. { ( 0g ` R ) } ) = ( 0g ` Y ) ) |
| 50 | 48 49 | eqtrd | |- ( ( R e. Mnd /\ I e. W ) -> ( F ` ( 0g ` R ) ) = ( 0g ` Y ) ) |
| 51 | 12 42 50 | 3jca | |- ( ( R e. Mnd /\ I e. W ) -> ( F : B --> ( Base ` Y ) /\ A. a e. B A. b e. B ( F ` ( a ( +g ` R ) b ) ) = ( ( F ` a ) ( +g ` Y ) ( F ` b ) ) /\ ( F ` ( 0g ` R ) ) = ( 0g ` Y ) ) ) |
| 52 | eqid | |- ( 0g ` Y ) = ( 0g ` Y ) |
|
| 53 | 2 25 14 31 44 52 | ismhm | |- ( F e. ( R MndHom Y ) <-> ( ( R e. Mnd /\ Y e. Mnd ) /\ ( F : B --> ( Base ` Y ) /\ A. a e. B A. b e. B ( F ` ( a ( +g ` R ) b ) ) = ( ( F ` a ) ( +g ` Y ) ( F ` b ) ) /\ ( F ` ( 0g ` R ) ) = ( 0g ` Y ) ) ) ) |
| 54 | 4 5 51 53 | syl21anbrc | |- ( ( R e. Mnd /\ I e. W ) -> F e. ( R MndHom Y ) ) |