This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsdiaglmhm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsdiaglmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| pwsdiaglmhm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐼 × { 𝑥 } ) ) | ||
| Assertion | pwsdiaglmhm | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 LMHom 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsdiaglmhm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsdiaglmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | pwsdiaglmhm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐼 × { 𝑥 } ) ) | |
| 4 | eqid | ⊢ ( ·𝑠 ‘ 𝑅 ) = ( ·𝑠 ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) | |
| 6 | eqid | ⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 ) | |
| 8 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑅 ) ) = ( Base ‘ ( Scalar ‘ 𝑅 ) ) | |
| 9 | simpl | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) → 𝑅 ∈ LMod ) | |
| 10 | 1 | pwslmod | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) → 𝑌 ∈ LMod ) |
| 11 | 1 6 | pwssca | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑌 ) ) |
| 12 | 11 | eqcomd | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑅 ) ) |
| 13 | lmodgrp | ⊢ ( 𝑅 ∈ LMod → 𝑅 ∈ Grp ) | |
| 14 | 1 2 3 | pwsdiagghm | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑌 ) ) |
| 15 | 13 14 | sylan | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑌 ) ) |
| 16 | simplr | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑊 ) | |
| 17 | 2 6 4 8 | lmodvscl | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
| 18 | 17 | 3expb | ⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
| 19 | 18 | adantlr | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
| 20 | 3 | fvdiagfn | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) ) = ( 𝐼 × { ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) } ) ) |
| 21 | 16 19 20 | syl2anc | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) ) = ( 𝐼 × { ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) } ) ) |
| 22 | 3 | fvdiagfn | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐼 × { 𝑏 } ) ) |
| 23 | 22 | ad2ant2l | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐼 × { 𝑏 } ) ) |
| 24 | 23 | oveq2d | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝐼 × { 𝑏 } ) ) ) |
| 25 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 26 | simpll | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → 𝑅 ∈ LMod ) | |
| 27 | simprl | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ) | |
| 28 | 1 2 25 | pwsdiagel | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐼 × { 𝑏 } ) ∈ ( Base ‘ 𝑌 ) ) |
| 29 | 28 | adantrl | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐼 × { 𝑏 } ) ∈ ( Base ‘ 𝑌 ) ) |
| 30 | 1 25 4 5 6 8 26 16 27 29 | pwsvscafval | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝐼 × { 𝑏 } ) ) = ( ( 𝐼 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑅 ) ( 𝐼 × { 𝑏 } ) ) ) |
| 31 | id | ⊢ ( 𝐼 ∈ 𝑊 → 𝐼 ∈ 𝑊 ) | |
| 32 | vex | ⊢ 𝑎 ∈ V | |
| 33 | 32 | a1i | ⊢ ( 𝐼 ∈ 𝑊 → 𝑎 ∈ V ) |
| 34 | vex | ⊢ 𝑏 ∈ V | |
| 35 | 34 | a1i | ⊢ ( 𝐼 ∈ 𝑊 → 𝑏 ∈ V ) |
| 36 | 31 33 35 | ofc12 | ⊢ ( 𝐼 ∈ 𝑊 → ( ( 𝐼 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑅 ) ( 𝐼 × { 𝑏 } ) ) = ( 𝐼 × { ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) } ) ) |
| 37 | 36 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝐼 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑅 ) ( 𝐼 × { 𝑏 } ) ) = ( 𝐼 × { ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) } ) ) |
| 38 | 24 30 37 | 3eqtrd | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) ) = ( 𝐼 × { ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) } ) ) |
| 39 | 21 38 | eqtr4d | ⊢ ( ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 40 | 2 4 5 6 7 8 9 10 12 15 39 | islmhmd | ⊢ ( ( 𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 LMHom 𝑌 ) ) |