This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsdiaglmhm.y | |- Y = ( R ^s I ) |
|
| pwsdiaglmhm.b | |- B = ( Base ` R ) |
||
| pwsdiaglmhm.f | |- F = ( x e. B |-> ( I X. { x } ) ) |
||
| Assertion | pwsdiaglmhm | |- ( ( R e. LMod /\ I e. W ) -> F e. ( R LMHom Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsdiaglmhm.y | |- Y = ( R ^s I ) |
|
| 2 | pwsdiaglmhm.b | |- B = ( Base ` R ) |
|
| 3 | pwsdiaglmhm.f | |- F = ( x e. B |-> ( I X. { x } ) ) |
|
| 4 | eqid | |- ( .s ` R ) = ( .s ` R ) |
|
| 5 | eqid | |- ( .s ` Y ) = ( .s ` Y ) |
|
| 6 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 7 | eqid | |- ( Scalar ` Y ) = ( Scalar ` Y ) |
|
| 8 | eqid | |- ( Base ` ( Scalar ` R ) ) = ( Base ` ( Scalar ` R ) ) |
|
| 9 | simpl | |- ( ( R e. LMod /\ I e. W ) -> R e. LMod ) |
|
| 10 | 1 | pwslmod | |- ( ( R e. LMod /\ I e. W ) -> Y e. LMod ) |
| 11 | 1 6 | pwssca | |- ( ( R e. LMod /\ I e. W ) -> ( Scalar ` R ) = ( Scalar ` Y ) ) |
| 12 | 11 | eqcomd | |- ( ( R e. LMod /\ I e. W ) -> ( Scalar ` Y ) = ( Scalar ` R ) ) |
| 13 | lmodgrp | |- ( R e. LMod -> R e. Grp ) |
|
| 14 | 1 2 3 | pwsdiagghm | |- ( ( R e. Grp /\ I e. W ) -> F e. ( R GrpHom Y ) ) |
| 15 | 13 14 | sylan | |- ( ( R e. LMod /\ I e. W ) -> F e. ( R GrpHom Y ) ) |
| 16 | simplr | |- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> I e. W ) |
|
| 17 | 2 6 4 8 | lmodvscl | |- ( ( R e. LMod /\ a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) -> ( a ( .s ` R ) b ) e. B ) |
| 18 | 17 | 3expb | |- ( ( R e. LMod /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( a ( .s ` R ) b ) e. B ) |
| 19 | 18 | adantlr | |- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( a ( .s ` R ) b ) e. B ) |
| 20 | 3 | fvdiagfn | |- ( ( I e. W /\ ( a ( .s ` R ) b ) e. B ) -> ( F ` ( a ( .s ` R ) b ) ) = ( I X. { ( a ( .s ` R ) b ) } ) ) |
| 21 | 16 19 20 | syl2anc | |- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( F ` ( a ( .s ` R ) b ) ) = ( I X. { ( a ( .s ` R ) b ) } ) ) |
| 22 | 3 | fvdiagfn | |- ( ( I e. W /\ b e. B ) -> ( F ` b ) = ( I X. { b } ) ) |
| 23 | 22 | ad2ant2l | |- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( F ` b ) = ( I X. { b } ) ) |
| 24 | 23 | oveq2d | |- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( a ( .s ` Y ) ( F ` b ) ) = ( a ( .s ` Y ) ( I X. { b } ) ) ) |
| 25 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 26 | simpll | |- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> R e. LMod ) |
|
| 27 | simprl | |- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> a e. ( Base ` ( Scalar ` R ) ) ) |
|
| 28 | 1 2 25 | pwsdiagel | |- ( ( ( R e. LMod /\ I e. W ) /\ b e. B ) -> ( I X. { b } ) e. ( Base ` Y ) ) |
| 29 | 28 | adantrl | |- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( I X. { b } ) e. ( Base ` Y ) ) |
| 30 | 1 25 4 5 6 8 26 16 27 29 | pwsvscafval | |- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( a ( .s ` Y ) ( I X. { b } ) ) = ( ( I X. { a } ) oF ( .s ` R ) ( I X. { b } ) ) ) |
| 31 | id | |- ( I e. W -> I e. W ) |
|
| 32 | vex | |- a e. _V |
|
| 33 | 32 | a1i | |- ( I e. W -> a e. _V ) |
| 34 | vex | |- b e. _V |
|
| 35 | 34 | a1i | |- ( I e. W -> b e. _V ) |
| 36 | 31 33 35 | ofc12 | |- ( I e. W -> ( ( I X. { a } ) oF ( .s ` R ) ( I X. { b } ) ) = ( I X. { ( a ( .s ` R ) b ) } ) ) |
| 37 | 36 | ad2antlr | |- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( ( I X. { a } ) oF ( .s ` R ) ( I X. { b } ) ) = ( I X. { ( a ( .s ` R ) b ) } ) ) |
| 38 | 24 30 37 | 3eqtrd | |- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( a ( .s ` Y ) ( F ` b ) ) = ( I X. { ( a ( .s ` R ) b ) } ) ) |
| 39 | 21 38 | eqtr4d | |- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( F ` ( a ( .s ` R ) b ) ) = ( a ( .s ` Y ) ( F ` b ) ) ) |
| 40 | 2 4 5 6 7 8 9 10 12 15 39 | islmhmd | |- ( ( R e. LMod /\ I e. W ) -> F e. ( R LMHom Y ) ) |