This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsdiagghm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsdiagghm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| pwsdiagghm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐼 × { 𝑥 } ) ) | ||
| Assertion | pwsdiagghm | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsdiagghm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsdiagghm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | pwsdiagghm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐼 × { 𝑥 } ) ) | |
| 4 | grpmnd | ⊢ ( 𝑅 ∈ Grp → 𝑅 ∈ Mnd ) | |
| 5 | 1 2 3 | pwsdiagmhm | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 MndHom 𝑌 ) ) |
| 6 | 4 5 | sylan | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 MndHom 𝑌 ) ) |
| 7 | 1 | pwsgrp | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊 ) → 𝑌 ∈ Grp ) |
| 8 | ghmmhmb | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑌 ∈ Grp ) → ( 𝑅 GrpHom 𝑌 ) = ( 𝑅 MndHom 𝑌 ) ) | |
| 9 | 7 8 | syldan | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊 ) → ( 𝑅 GrpHom 𝑌 ) = ( 𝑅 MndHom 𝑌 ) ) |
| 10 | 6 9 | eleqtrrd | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑌 ) ) |