This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en , which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Stefan O'Rear, 9-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pw2f1o2.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) | |
| Assertion | pw2f1ocnv | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 : ( 2o ↑m 𝐴 ) –1-1-onto→ 𝒫 𝐴 ∧ ◡ 𝐹 = ( 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2f1o2.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↦ ( ◡ 𝑥 “ { 1o } ) ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | cnvex | ⊢ ◡ 𝑥 ∈ V |
| 4 | imaexg | ⊢ ( ◡ 𝑥 ∈ V → ( ◡ 𝑥 “ { 1o } ) ∈ V ) | |
| 5 | 3 4 | mp1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( 2o ↑m 𝐴 ) ) → ( ◡ 𝑥 “ { 1o } ) ∈ V ) |
| 6 | mptexg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ∈ V ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝐴 ) → ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ∈ V ) |
| 8 | 2on | ⊢ 2o ∈ On | |
| 9 | elmapg | ⊢ ( ( 2o ∈ On ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↔ 𝑥 : 𝐴 ⟶ 2o ) ) | |
| 10 | 8 9 | mpan | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ↔ 𝑥 : 𝐴 ⟶ 2o ) ) |
| 11 | 10 | anbi1d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ↔ ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ) ) |
| 12 | 1oex | ⊢ 1o ∈ V | |
| 13 | 12 | sucid | ⊢ 1o ∈ suc 1o |
| 14 | df-2o | ⊢ 2o = suc 1o | |
| 15 | 13 14 | eleqtrri | ⊢ 1o ∈ 2o |
| 16 | 0ex | ⊢ ∅ ∈ V | |
| 17 | 16 | prid1 | ⊢ ∅ ∈ { ∅ , { ∅ } } |
| 18 | df2o2 | ⊢ 2o = { ∅ , { ∅ } } | |
| 19 | 17 18 | eleqtrri | ⊢ ∅ ∈ 2o |
| 20 | 15 19 | ifcli | ⊢ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ∈ 2o |
| 21 | 20 | rgenw | ⊢ ∀ 𝑧 ∈ 𝐴 if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ∈ 2o |
| 22 | eqid | ⊢ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) | |
| 23 | 22 | fmpt | ⊢ ( ∀ 𝑧 ∈ 𝐴 if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ∈ 2o ↔ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) : 𝐴 ⟶ 2o ) |
| 24 | 21 23 | mpbi | ⊢ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) : 𝐴 ⟶ 2o |
| 25 | simpr | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) | |
| 26 | 25 | feq1d | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → ( 𝑥 : 𝐴 ⟶ 2o ↔ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) : 𝐴 ⟶ 2o ) ) |
| 27 | 24 26 | mpbiri | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → 𝑥 : 𝐴 ⟶ 2o ) |
| 28 | iftrue | ⊢ ( 𝑤 ∈ 𝑦 → if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = 1o ) | |
| 29 | noel | ⊢ ¬ ∅ ∈ ∅ | |
| 30 | iffalse | ⊢ ( ¬ 𝑤 ∈ 𝑦 → if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = ∅ ) | |
| 31 | 30 | eqeq1d | ⊢ ( ¬ 𝑤 ∈ 𝑦 → ( if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = 1o ↔ ∅ = 1o ) ) |
| 32 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 33 | eleq2 | ⊢ ( ∅ = 1o → ( ∅ ∈ ∅ ↔ ∅ ∈ 1o ) ) | |
| 34 | 32 33 | mpbiri | ⊢ ( ∅ = 1o → ∅ ∈ ∅ ) |
| 35 | 31 34 | biimtrdi | ⊢ ( ¬ 𝑤 ∈ 𝑦 → ( if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = 1o → ∅ ∈ ∅ ) ) |
| 36 | 29 35 | mtoi | ⊢ ( ¬ 𝑤 ∈ 𝑦 → ¬ if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = 1o ) |
| 37 | 36 | con4i | ⊢ ( if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = 1o → 𝑤 ∈ 𝑦 ) |
| 38 | 28 37 | impbii | ⊢ ( 𝑤 ∈ 𝑦 ↔ if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = 1o ) |
| 39 | 25 | fveq1d | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → ( 𝑥 ‘ 𝑤 ) = ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ‘ 𝑤 ) ) |
| 40 | elequ1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ) | |
| 41 | 40 | ifbid | ⊢ ( 𝑧 = 𝑤 → if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) = if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) ) |
| 42 | 12 16 | ifcli | ⊢ if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) ∈ V |
| 43 | 41 22 42 | fvmpt | ⊢ ( 𝑤 ∈ 𝐴 → ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) ) |
| 44 | 39 43 | sylan9eq | ⊢ ( ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) ) |
| 45 | 44 | eqeq1d | ⊢ ( ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ‘ 𝑤 ) = 1o ↔ if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = 1o ) ) |
| 46 | 38 45 | bitr4id | ⊢ ( ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ 𝑦 ↔ ( 𝑥 ‘ 𝑤 ) = 1o ) ) |
| 47 | fvex | ⊢ ( 𝑥 ‘ 𝑤 ) ∈ V | |
| 48 | 47 | elsn | ⊢ ( ( 𝑥 ‘ 𝑤 ) ∈ { 1o } ↔ ( 𝑥 ‘ 𝑤 ) = 1o ) |
| 49 | 46 48 | bitr4di | ⊢ ( ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ 𝑦 ↔ ( 𝑥 ‘ 𝑤 ) ∈ { 1o } ) ) |
| 50 | 49 | pm5.32da | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → ( ( 𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝑦 ) ↔ ( 𝑤 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑤 ) ∈ { 1o } ) ) ) |
| 51 | ssel | ⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝐴 ) ) | |
| 52 | 51 | adantr | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝐴 ) ) |
| 53 | 52 | pm4.71rd | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → ( 𝑤 ∈ 𝑦 ↔ ( 𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝑦 ) ) ) |
| 54 | ffn | ⊢ ( 𝑥 : 𝐴 ⟶ 2o → 𝑥 Fn 𝐴 ) | |
| 55 | elpreima | ⊢ ( 𝑥 Fn 𝐴 → ( 𝑤 ∈ ( ◡ 𝑥 “ { 1o } ) ↔ ( 𝑤 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑤 ) ∈ { 1o } ) ) ) | |
| 56 | 27 54 55 | 3syl | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → ( 𝑤 ∈ ( ◡ 𝑥 “ { 1o } ) ↔ ( 𝑤 ∈ 𝐴 ∧ ( 𝑥 ‘ 𝑤 ) ∈ { 1o } ) ) ) |
| 57 | 50 53 56 | 3bitr4d | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ ( ◡ 𝑥 “ { 1o } ) ) ) |
| 58 | 57 | eqrdv | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) |
| 59 | 27 58 | jca | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) → ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ) |
| 60 | simpr | ⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) | |
| 61 | cnvimass | ⊢ ( ◡ 𝑥 “ { 1o } ) ⊆ dom 𝑥 | |
| 62 | fdm | ⊢ ( 𝑥 : 𝐴 ⟶ 2o → dom 𝑥 = 𝐴 ) | |
| 63 | 62 | adantr | ⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → dom 𝑥 = 𝐴 ) |
| 64 | 61 63 | sseqtrid | ⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → ( ◡ 𝑥 “ { 1o } ) ⊆ 𝐴 ) |
| 65 | 60 64 | eqsstrd | ⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → 𝑦 ⊆ 𝐴 ) |
| 66 | simplr | ⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) | |
| 67 | 66 | eleq2d | ⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ ( ◡ 𝑥 “ { 1o } ) ) ) |
| 68 | 54 | adantr | ⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → 𝑥 Fn 𝐴 ) |
| 69 | fnbrfvb | ⊢ ( ( 𝑥 Fn 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ‘ 𝑤 ) = 1o ↔ 𝑤 𝑥 1o ) ) | |
| 70 | 68 69 | sylan | ⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ‘ 𝑤 ) = 1o ↔ 𝑤 𝑥 1o ) ) |
| 71 | 1on | ⊢ 1o ∈ On | |
| 72 | vex | ⊢ 𝑤 ∈ V | |
| 73 | 72 | eliniseg | ⊢ ( 1o ∈ On → ( 𝑤 ∈ ( ◡ 𝑥 “ { 1o } ) ↔ 𝑤 𝑥 1o ) ) |
| 74 | 71 73 | ax-mp | ⊢ ( 𝑤 ∈ ( ◡ 𝑥 “ { 1o } ) ↔ 𝑤 𝑥 1o ) |
| 75 | 70 74 | bitr4di | ⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ‘ 𝑤 ) = 1o ↔ 𝑤 ∈ ( ◡ 𝑥 “ { 1o } ) ) ) |
| 76 | 67 75 | bitr4d | ⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ 𝑦 ↔ ( 𝑥 ‘ 𝑤 ) = 1o ) ) |
| 77 | 76 | biimpa | ⊢ ( ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝑦 ) → ( 𝑥 ‘ 𝑤 ) = 1o ) |
| 78 | 28 | adantl | ⊢ ( ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝑦 ) → if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = 1o ) |
| 79 | 77 78 | eqtr4d | ⊢ ( ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑤 ∈ 𝑦 ) → ( 𝑥 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) ) |
| 80 | ffvelcdm | ⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑤 ) ∈ 2o ) | |
| 81 | 80 | adantlr | ⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑤 ) ∈ 2o ) |
| 82 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 83 | 81 82 | eleqtrdi | ⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑤 ) ∈ { ∅ , 1o } ) |
| 84 | 47 | elpr | ⊢ ( ( 𝑥 ‘ 𝑤 ) ∈ { ∅ , 1o } ↔ ( ( 𝑥 ‘ 𝑤 ) = ∅ ∨ ( 𝑥 ‘ 𝑤 ) = 1o ) ) |
| 85 | 83 84 | sylib | ⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ‘ 𝑤 ) = ∅ ∨ ( 𝑥 ‘ 𝑤 ) = 1o ) ) |
| 86 | 85 | ord | ⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ¬ ( 𝑥 ‘ 𝑤 ) = ∅ → ( 𝑥 ‘ 𝑤 ) = 1o ) ) |
| 87 | 86 76 | sylibrd | ⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ¬ ( 𝑥 ‘ 𝑤 ) = ∅ → 𝑤 ∈ 𝑦 ) ) |
| 88 | 87 | con1d | ⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ¬ 𝑤 ∈ 𝑦 → ( 𝑥 ‘ 𝑤 ) = ∅ ) ) |
| 89 | 88 | imp | ⊢ ( ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 ∈ 𝑦 ) → ( 𝑥 ‘ 𝑤 ) = ∅ ) |
| 90 | 30 | adantl | ⊢ ( ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 ∈ 𝑦 ) → if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) = ∅ ) |
| 91 | 89 90 | eqtr4d | ⊢ ( ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 ∈ 𝑦 ) → ( 𝑥 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) ) |
| 92 | 79 91 | pm2.61dan | ⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) ) |
| 93 | 43 | adantl | ⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑦 , 1o , ∅ ) ) |
| 94 | 92 93 | eqtr4d | ⊢ ( ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑤 ) = ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ‘ 𝑤 ) ) |
| 95 | 94 | ralrimiva | ⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → ∀ 𝑤 ∈ 𝐴 ( 𝑥 ‘ 𝑤 ) = ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ‘ 𝑤 ) ) |
| 96 | ffn | ⊢ ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) : 𝐴 ⟶ 2o → ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) Fn 𝐴 ) | |
| 97 | 24 96 | ax-mp | ⊢ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) Fn 𝐴 |
| 98 | eqfnfv | ⊢ ( ( 𝑥 Fn 𝐴 ∧ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) Fn 𝐴 ) → ( 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑥 ‘ 𝑤 ) = ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ‘ 𝑤 ) ) ) | |
| 99 | 68 97 98 | sylancl | ⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → ( 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑥 ‘ 𝑤 ) = ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ‘ 𝑤 ) ) ) |
| 100 | 95 99 | mpbird | ⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) |
| 101 | 65 100 | jca | ⊢ ( ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) → ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ) |
| 102 | 59 101 | impbii | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ↔ ( 𝑥 : 𝐴 ⟶ 2o ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ) |
| 103 | 11 102 | bitr4di | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ) ) |
| 104 | velpw | ⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) | |
| 105 | 104 | anbi1i | ⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ) |
| 106 | 103 105 | bitr4di | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( 2o ↑m 𝐴 ) ∧ 𝑦 = ( ◡ 𝑥 “ { 1o } ) ) ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑥 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ) ) |
| 107 | 1 5 7 106 | f1ocnvd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 : ( 2o ↑m 𝐴 ) –1-1-onto→ 𝒫 𝐴 ∧ ◡ 𝐹 = ( 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑦 , 1o , ∅ ) ) ) ) ) |