This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1od.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| f1od.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) | ||
| f1od.3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ 𝑋 ) | ||
| f1od.4 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) ) | ||
| Assertion | f1ocnvd | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ◡ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1od.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 2 | f1od.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) | |
| 3 | f1od.3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ 𝑋 ) | |
| 4 | f1od.4 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) ) ) | |
| 5 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝑊 ) |
| 6 | 1 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝑊 → 𝐹 Fn 𝐴 ) |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 8 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 𝐷 ∈ 𝑋 ) |
| 9 | eqid | ⊢ ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) = ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) | |
| 10 | 9 | fnmpt | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝐷 ∈ 𝑋 → ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) Fn 𝐵 ) |
| 11 | 8 10 | syl | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) Fn 𝐵 ) |
| 12 | 4 | opabbidv | ⊢ ( 𝜑 → { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) } ) |
| 13 | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } | |
| 14 | 1 13 | eqtri | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } |
| 15 | 14 | cnveqi | ⊢ ◡ 𝐹 = ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } |
| 16 | cnvopab | ⊢ ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } | |
| 17 | 15 16 | eqtri | ⊢ ◡ 𝐹 = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } |
| 18 | df-mpt | ⊢ ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷 ) } | |
| 19 | 12 17 18 | 3eqtr4g | ⊢ ( 𝜑 → ◡ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) ) |
| 20 | 19 | fneq1d | ⊢ ( 𝜑 → ( ◡ 𝐹 Fn 𝐵 ↔ ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) Fn 𝐵 ) ) |
| 21 | 11 20 | mpbird | ⊢ ( 𝜑 → ◡ 𝐹 Fn 𝐵 ) |
| 22 | dff1o4 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ◡ 𝐹 Fn 𝐵 ) ) | |
| 23 | 7 21 22 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 24 | 23 19 | jca | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ◡ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) ) ) |