This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A scalar is lifted into a member of the power series. (Contributed by SN, 25-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrasclcl.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrasclcl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrasclcl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| psrasclcl.a | ⊢ 𝐴 = ( algSc ‘ 𝑆 ) | ||
| psrasclcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| psrasclcl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| psrasclcl.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | ||
| Assertion | psrasclcl | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝐶 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrasclcl.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrasclcl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | psrasclcl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | psrasclcl.a | ⊢ 𝐴 = ( algSc ‘ 𝑆 ) | |
| 5 | psrasclcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | psrasclcl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 7 | psrasclcl.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | |
| 8 | eqid | ⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) | |
| 9 | 1 5 6 | psrring | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 10 | 1 5 6 | psrlmod | ⊢ ( 𝜑 → 𝑆 ∈ LMod ) |
| 11 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) | |
| 12 | 4 8 9 10 11 2 | asclf | ⊢ ( 𝜑 → 𝐴 : ( Base ‘ ( Scalar ‘ 𝑆 ) ) ⟶ 𝐵 ) |
| 13 | 1 5 6 | psrsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑆 ) ) |
| 14 | 13 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 15 | 3 14 | eqtrid | ⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 16 | 15 | feq2d | ⊢ ( 𝜑 → ( 𝐴 : 𝐾 ⟶ 𝐵 ↔ 𝐴 : ( Base ‘ ( Scalar ‘ 𝑆 ) ) ⟶ 𝐵 ) ) |
| 17 | 12 16 | mpbird | ⊢ ( 𝜑 → 𝐴 : 𝐾 ⟶ 𝐵 ) |
| 18 | 17 7 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝐶 ) ∈ 𝐵 ) |