This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the scalar injection into the power series algebra. (Contributed by SN, 18-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrascl.s | |- S = ( I mPwSer R ) |
|
| psrascl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| psrascl.z | |- .0. = ( 0g ` R ) |
||
| psrascl.k | |- K = ( Base ` R ) |
||
| psrascl.a | |- A = ( algSc ` S ) |
||
| psrascl.i | |- ( ph -> I e. V ) |
||
| psrascl.r | |- ( ph -> R e. Ring ) |
||
| psrascl.x | |- ( ph -> X e. K ) |
||
| Assertion | psrascl | |- ( ph -> ( A ` X ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , X , .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrascl.s | |- S = ( I mPwSer R ) |
|
| 2 | psrascl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 3 | psrascl.z | |- .0. = ( 0g ` R ) |
|
| 4 | psrascl.k | |- K = ( Base ` R ) |
|
| 5 | psrascl.a | |- A = ( algSc ` S ) |
|
| 6 | psrascl.i | |- ( ph -> I e. V ) |
|
| 7 | psrascl.r | |- ( ph -> R e. Ring ) |
|
| 8 | psrascl.x | |- ( ph -> X e. K ) |
|
| 9 | 1 6 7 | psrsca | |- ( ph -> R = ( Scalar ` S ) ) |
| 10 | 9 | fveq2d | |- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` S ) ) ) |
| 11 | 4 10 | eqtrid | |- ( ph -> K = ( Base ` ( Scalar ` S ) ) ) |
| 12 | 8 11 | eleqtrd | |- ( ph -> X e. ( Base ` ( Scalar ` S ) ) ) |
| 13 | eqid | |- ( Scalar ` S ) = ( Scalar ` S ) |
|
| 14 | eqid | |- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
|
| 15 | eqid | |- ( .s ` S ) = ( .s ` S ) |
|
| 16 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 17 | 5 13 14 15 16 | asclval | |- ( X e. ( Base ` ( Scalar ` S ) ) -> ( A ` X ) = ( X ( .s ` S ) ( 1r ` S ) ) ) |
| 18 | 12 17 | syl | |- ( ph -> ( A ` X ) = ( X ( .s ` S ) ( 1r ` S ) ) ) |
| 19 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 20 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 21 | 1 6 7 | psrring | |- ( ph -> S e. Ring ) |
| 22 | 19 16 | ringidcl | |- ( S e. Ring -> ( 1r ` S ) e. ( Base ` S ) ) |
| 23 | 21 22 | syl | |- ( ph -> ( 1r ` S ) e. ( Base ` S ) ) |
| 24 | 1 15 4 19 20 2 8 23 | psrvsca | |- ( ph -> ( X ( .s ` S ) ( 1r ` S ) ) = ( ( D X. { X } ) oF ( .r ` R ) ( 1r ` S ) ) ) |
| 25 | fnconstg | |- ( X e. K -> ( D X. { X } ) Fn D ) |
|
| 26 | 8 25 | syl | |- ( ph -> ( D X. { X } ) Fn D ) |
| 27 | 1 4 2 19 23 | psrelbas | |- ( ph -> ( 1r ` S ) : D --> K ) |
| 28 | 27 | ffnd | |- ( ph -> ( 1r ` S ) Fn D ) |
| 29 | ovexd | |- ( ph -> ( NN0 ^m I ) e. _V ) |
|
| 30 | 2 29 | rabexd | |- ( ph -> D e. _V ) |
| 31 | inidm | |- ( D i^i D ) = D |
|
| 32 | fvconst2g | |- ( ( X e. K /\ y e. D ) -> ( ( D X. { X } ) ` y ) = X ) |
|
| 33 | 8 32 | sylan | |- ( ( ph /\ y e. D ) -> ( ( D X. { X } ) ` y ) = X ) |
| 34 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 35 | 1 6 7 2 3 34 16 | psr1 | |- ( ph -> ( 1r ` S ) = ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ) |
| 36 | 35 | adantr | |- ( ( ph /\ y e. D ) -> ( 1r ` S ) = ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ) |
| 37 | 36 | fveq1d | |- ( ( ph /\ y e. D ) -> ( ( 1r ` S ) ` y ) = ( ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ` y ) ) |
| 38 | eqeq1 | |- ( d = y -> ( d = ( I X. { 0 } ) <-> y = ( I X. { 0 } ) ) ) |
|
| 39 | 38 | ifbid | |- ( d = y -> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) = if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) |
| 40 | eqid | |- ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) = ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) |
|
| 41 | fvex | |- ( 1r ` R ) e. _V |
|
| 42 | 3 | fvexi | |- .0. e. _V |
| 43 | 41 42 | ifex | |- if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) e. _V |
| 44 | 39 40 43 | fvmpt | |- ( y e. D -> ( ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ` y ) = if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) |
| 45 | 44 | adantl | |- ( ( ph /\ y e. D ) -> ( ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ` y ) = if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) |
| 46 | 37 45 | eqtrd | |- ( ( ph /\ y e. D ) -> ( ( 1r ` S ) ` y ) = if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) |
| 47 | 26 28 30 30 31 33 46 | offval | |- ( ph -> ( ( D X. { X } ) oF ( .r ` R ) ( 1r ` S ) ) = ( y e. D |-> ( X ( .r ` R ) if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ) ) |
| 48 | ovif2 | |- ( X ( .r ` R ) if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) = if ( y = ( I X. { 0 } ) , ( X ( .r ` R ) ( 1r ` R ) ) , ( X ( .r ` R ) .0. ) ) |
|
| 49 | 4 20 34 7 8 | ringridmd | |- ( ph -> ( X ( .r ` R ) ( 1r ` R ) ) = X ) |
| 50 | 4 20 3 7 8 | ringrzd | |- ( ph -> ( X ( .r ` R ) .0. ) = .0. ) |
| 51 | 49 50 | ifeq12d | |- ( ph -> if ( y = ( I X. { 0 } ) , ( X ( .r ` R ) ( 1r ` R ) ) , ( X ( .r ` R ) .0. ) ) = if ( y = ( I X. { 0 } ) , X , .0. ) ) |
| 52 | 48 51 | eqtrid | |- ( ph -> ( X ( .r ` R ) if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) = if ( y = ( I X. { 0 } ) , X , .0. ) ) |
| 53 | 52 | mpteq2dv | |- ( ph -> ( y e. D |-> ( X ( .r ` R ) if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , X , .0. ) ) ) |
| 54 | 47 53 | eqtrd | |- ( ph -> ( ( D X. { X } ) oF ( .r ` R ) ( 1r ` S ) ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , X , .0. ) ) ) |
| 55 | 18 24 54 | 3eqtrd | |- ( ph -> ( A ` X ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , X , .0. ) ) ) |