This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for psgndif . (Contributed by AV, 27-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnfix.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| psgnfix.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | ||
| psgnfix.s | ⊢ 𝑆 = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | ||
| psgnfix.z | ⊢ 𝑍 = ( SymGrp ‘ 𝑁 ) | ||
| psgnfix.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | ||
| Assertion | psgndiflemB | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) → ( ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → 𝑄 = ( 𝑍 Σg 𝑈 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfix.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 2 | psgnfix.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 3 | psgnfix.s | ⊢ 𝑆 = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 4 | psgnfix.z | ⊢ 𝑍 = ( SymGrp ‘ 𝑁 ) | |
| 5 | psgnfix.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | |
| 6 | elrabi | ⊢ ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → 𝑄 ∈ 𝑃 ) | |
| 7 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
| 8 | 7 1 | symgbasf | ⊢ ( 𝑄 ∈ 𝑃 → 𝑄 : 𝑁 ⟶ 𝑁 ) |
| 9 | ffn | ⊢ ( 𝑄 : 𝑁 ⟶ 𝑁 → 𝑄 Fn 𝑁 ) | |
| 10 | 6 8 9 | 3syl | ⊢ ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → 𝑄 Fn 𝑁 ) |
| 11 | 10 | ad3antlr | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → 𝑄 Fn 𝑁 ) |
| 12 | simpl | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → 𝑁 ∈ Fin ) | |
| 13 | 12 | adantr | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → 𝑁 ∈ Fin ) |
| 14 | 13 | adantr | ⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) → 𝑁 ∈ Fin ) |
| 15 | simp1 | ⊢ ( ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → 𝑈 ∈ Word 𝑅 ) | |
| 16 | 4 | eqcomi | ⊢ ( SymGrp ‘ 𝑁 ) = 𝑍 |
| 17 | 16 | fveq2i | ⊢ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ 𝑍 ) |
| 18 | 1 17 | eqtri | ⊢ 𝑃 = ( Base ‘ 𝑍 ) |
| 19 | 4 18 5 | gsmtrcl | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑈 ∈ Word 𝑅 ) → ( 𝑍 Σg 𝑈 ) ∈ 𝑃 ) |
| 20 | 14 15 19 | syl2an | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( 𝑍 Σg 𝑈 ) ∈ 𝑃 ) |
| 21 | 7 1 | symgbasf | ⊢ ( ( 𝑍 Σg 𝑈 ) ∈ 𝑃 → ( 𝑍 Σg 𝑈 ) : 𝑁 ⟶ 𝑁 ) |
| 22 | ffn | ⊢ ( ( 𝑍 Σg 𝑈 ) : 𝑁 ⟶ 𝑁 → ( 𝑍 Σg 𝑈 ) Fn 𝑁 ) | |
| 23 | 20 21 22 | 3syl | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( 𝑍 Σg 𝑈 ) Fn 𝑁 ) |
| 24 | 12 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → 𝑁 ∈ Fin ) |
| 25 | simpr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → 𝐾 ∈ 𝑁 ) | |
| 26 | 25 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → 𝐾 ∈ 𝑁 ) |
| 27 | eqid | ⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) | |
| 28 | 5 4 27 | symgtrf | ⊢ 𝑅 ⊆ ( Base ‘ 𝑍 ) |
| 29 | sswrd | ⊢ ( 𝑅 ⊆ ( Base ‘ 𝑍 ) → Word 𝑅 ⊆ Word ( Base ‘ 𝑍 ) ) | |
| 30 | 29 | sseld | ⊢ ( 𝑅 ⊆ ( Base ‘ 𝑍 ) → ( 𝑈 ∈ Word 𝑅 → 𝑈 ∈ Word ( Base ‘ 𝑍 ) ) ) |
| 31 | 28 30 | ax-mp | ⊢ ( 𝑈 ∈ Word 𝑅 → 𝑈 ∈ Word ( Base ‘ 𝑍 ) ) |
| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → 𝑈 ∈ Word ( Base ‘ 𝑍 ) ) |
| 33 | 32 | adantl | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → 𝑈 ∈ Word ( Base ‘ 𝑍 ) ) |
| 34 | 24 26 33 | 3jca | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ∧ 𝑈 ∈ Word ( Base ‘ 𝑍 ) ) ) |
| 35 | simpl | ⊢ ( ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) | |
| 36 | 35 | ralimi | ⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) |
| 37 | 36 | 3ad2ant3 | ⊢ ( ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) |
| 38 | 37 | adantl | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) |
| 39 | oveq2 | ⊢ ( ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑊 ) → ( 0 ..^ ( ♯ ‘ 𝑈 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 40 | 39 | eqcoms | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( 0 ..^ ( ♯ ‘ 𝑈 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 41 | 40 | raleqdv | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 42 | 41 | 3ad2ant2 | ⊢ ( ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 43 | 42 | adantl | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 44 | 38 43 | mpbird | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) |
| 45 | 4 27 | gsmsymgrfix | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ∧ 𝑈 ∈ Word ( Base ‘ 𝑍 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑍 Σg 𝑈 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 46 | 34 44 45 | sylc | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( ( 𝑍 Σg 𝑈 ) ‘ 𝐾 ) = 𝐾 ) |
| 47 | 46 | eqcomd | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → 𝐾 = ( ( 𝑍 Σg 𝑈 ) ‘ 𝐾 ) ) |
| 48 | 47 | adantr | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 = 𝐾 ) → 𝐾 = ( ( 𝑍 Σg 𝑈 ) ‘ 𝐾 ) ) |
| 49 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ 𝐾 ) ) | |
| 50 | fveq1 | ⊢ ( 𝑞 = 𝑄 → ( 𝑞 ‘ 𝐾 ) = ( 𝑄 ‘ 𝐾 ) ) | |
| 51 | 50 | eqeq1d | ⊢ ( 𝑞 = 𝑄 → ( ( 𝑞 ‘ 𝐾 ) = 𝐾 ↔ ( 𝑄 ‘ 𝐾 ) = 𝐾 ) ) |
| 52 | 51 | elrab | ⊢ ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ↔ ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐾 ) ) |
| 53 | 52 | simprbi | ⊢ ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → ( 𝑄 ‘ 𝐾 ) = 𝐾 ) |
| 54 | 53 | ad3antlr | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( 𝑄 ‘ 𝐾 ) = 𝐾 ) |
| 55 | 49 54 | sylan9eqr | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 = 𝐾 ) → ( 𝑄 ‘ 𝑘 ) = 𝐾 ) |
| 56 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝐾 ) ) | |
| 57 | 56 | adantl | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 = 𝐾 ) → ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝐾 ) ) |
| 58 | 48 55 57 | 3eqtr4d | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 = 𝐾 ) → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) |
| 59 | 58 | ex | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( 𝑘 = 𝐾 → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) ) |
| 60 | 59 | adantr | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑘 = 𝐾 → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) ) |
| 61 | 60 | com12 | ⊢ ( 𝑘 = 𝐾 → ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) ) |
| 62 | fveq1 | ⊢ ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( ( 𝑆 Σg 𝑊 ) ‘ 𝑘 ) ) | |
| 63 | 62 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( ( 𝑆 Σg 𝑊 ) ‘ 𝑘 ) ) |
| 64 | 63 | ad3antlr | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( ( 𝑆 Σg 𝑊 ) ‘ 𝑘 ) ) |
| 65 | 64 | adantl | ⊢ ( ( ¬ 𝑘 = 𝐾 ∧ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( ( 𝑆 Σg 𝑊 ) ‘ 𝑘 ) ) |
| 66 | simpr | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑘 ∈ 𝑁 ) → 𝑘 ∈ 𝑁 ) | |
| 67 | neqne | ⊢ ( ¬ 𝑘 = 𝐾 → 𝑘 ≠ 𝐾 ) | |
| 68 | 66 67 | anim12i | ⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑘 ∈ 𝑁 ) ∧ ¬ 𝑘 = 𝐾 ) → ( 𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐾 ) ) |
| 69 | eldifsn | ⊢ ( 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ↔ ( 𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐾 ) ) | |
| 70 | 68 69 | sylibr | ⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑘 ∈ 𝑁 ) ∧ ¬ 𝑘 = 𝐾 ) → 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ) |
| 71 | 70 | fvresd | ⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑘 ∈ 𝑁 ) ∧ ¬ 𝑘 = 𝐾 ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( 𝑄 ‘ 𝑘 ) ) |
| 72 | 71 | exp31 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑘 ∈ 𝑁 → ( ¬ 𝑘 = 𝐾 → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( 𝑄 ‘ 𝑘 ) ) ) ) |
| 73 | 72 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( 𝑘 ∈ 𝑁 → ( ¬ 𝑘 = 𝐾 → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( 𝑄 ‘ 𝑘 ) ) ) ) |
| 74 | 73 | imp | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( ¬ 𝑘 = 𝐾 → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( 𝑄 ‘ 𝑘 ) ) ) |
| 75 | 74 | impcom | ⊢ ( ( ¬ 𝑘 = 𝐾 ∧ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ‘ 𝑘 ) = ( 𝑄 ‘ 𝑘 ) ) |
| 76 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑆 Σg 𝑊 ) ‘ 𝑘 ) ) | |
| 77 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) | |
| 78 | 76 77 | eqeq12d | ⊢ ( 𝑛 = 𝑘 → ( ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ↔ ( ( 𝑆 Σg 𝑊 ) ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) ) |
| 79 | diffi | ⊢ ( 𝑁 ∈ Fin → ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ) | |
| 80 | 79 | ancri | ⊢ ( 𝑁 ∈ Fin → ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 81 | 80 | adantr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 82 | 81 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 83 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 84 | 2 3 83 | symgtrf | ⊢ 𝑇 ⊆ ( Base ‘ 𝑆 ) |
| 85 | sswrd | ⊢ ( 𝑇 ⊆ ( Base ‘ 𝑆 ) → Word 𝑇 ⊆ Word ( Base ‘ 𝑆 ) ) | |
| 86 | 85 | sseld | ⊢ ( 𝑇 ⊆ ( Base ‘ 𝑆 ) → ( 𝑊 ∈ Word 𝑇 → 𝑊 ∈ Word ( Base ‘ 𝑆 ) ) ) |
| 87 | 84 86 | ax-mp | ⊢ ( 𝑊 ∈ Word 𝑇 → 𝑊 ∈ Word ( Base ‘ 𝑆 ) ) |
| 88 | 87 | ad2antrl | ⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) → 𝑊 ∈ Word ( Base ‘ 𝑆 ) ) |
| 89 | 88 | adantr | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → 𝑊 ∈ Word ( Base ‘ 𝑆 ) ) |
| 90 | simpr2 | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) | |
| 91 | 89 33 90 | 3jca | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( 𝑊 ∈ Word ( Base ‘ 𝑆 ) ∧ 𝑈 ∈ Word ( Base ‘ 𝑍 ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) ) |
| 92 | 82 91 | jca | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ∧ 𝑁 ∈ Fin ) ∧ ( 𝑊 ∈ Word ( Base ‘ 𝑆 ) ∧ 𝑈 ∈ Word ( Base ‘ 𝑍 ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) ) ) |
| 93 | 92 | ad2antrl | ⊢ ( ( ¬ 𝑘 = 𝐾 ∧ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) ) → ( ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ∧ 𝑁 ∈ Fin ) ∧ ( 𝑊 ∈ Word ( Base ‘ 𝑆 ) ∧ 𝑈 ∈ Word ( Base ‘ 𝑍 ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) ) ) |
| 94 | simpr | ⊢ ( ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) → ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) | |
| 95 | 94 | ralimi | ⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 96 | 95 | 3ad2ant3 | ⊢ ( ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 97 | 96 | adantl | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 98 | 97 | ad2antrl | ⊢ ( ( ¬ 𝑘 = 𝐾 ∧ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 99 | incom | ⊢ ( ( 𝑁 ∖ { 𝐾 } ) ∩ 𝑁 ) = ( 𝑁 ∩ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 100 | indif | ⊢ ( 𝑁 ∩ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑁 ∖ { 𝐾 } ) | |
| 101 | 99 100 | eqtri | ⊢ ( ( 𝑁 ∖ { 𝐾 } ) ∩ 𝑁 ) = ( 𝑁 ∖ { 𝐾 } ) |
| 102 | 101 | eqcomi | ⊢ ( 𝑁 ∖ { 𝐾 } ) = ( ( 𝑁 ∖ { 𝐾 } ) ∩ 𝑁 ) |
| 103 | 3 83 4 27 102 | gsmsymgreq | ⊢ ( ( ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ∧ 𝑁 ∈ Fin ) ∧ ( 𝑊 ∈ Word ( Base ‘ 𝑆 ) ∧ 𝑈 ∈ Word ( Base ‘ 𝑍 ) ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) |
| 104 | 93 98 103 | sylc | ⊢ ( ( ¬ 𝑘 = 𝐾 ∧ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) ) → ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) |
| 105 | 67 | anim2i | ⊢ ( ( 𝑘 ∈ 𝑁 ∧ ¬ 𝑘 = 𝐾 ) → ( 𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐾 ) ) |
| 106 | 105 69 | sylibr | ⊢ ( ( 𝑘 ∈ 𝑁 ∧ ¬ 𝑘 = 𝐾 ) → 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ) |
| 107 | 106 | ex | ⊢ ( 𝑘 ∈ 𝑁 → ( ¬ 𝑘 = 𝐾 → 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 108 | 107 | adantl | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( ¬ 𝑘 = 𝐾 → 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 109 | 108 | impcom | ⊢ ( ( ¬ 𝑘 = 𝐾 ∧ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) ) → 𝑘 ∈ ( 𝑁 ∖ { 𝐾 } ) ) |
| 110 | 78 104 109 | rspcdva | ⊢ ( ( ¬ 𝑘 = 𝐾 ∧ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) ) → ( ( 𝑆 Σg 𝑊 ) ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) |
| 111 | 65 75 110 | 3eqtr3d | ⊢ ( ( ¬ 𝑘 = 𝐾 ∧ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) ) → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) |
| 112 | 111 | ex | ⊢ ( ¬ 𝑘 = 𝐾 → ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) ) |
| 113 | 61 112 | pm2.61i | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑘 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑘 ) ) |
| 114 | 11 23 113 | eqfnfvd | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → 𝑄 = ( 𝑍 Σg 𝑈 ) ) |
| 115 | 114 | exp31 | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) → ( ( 𝑈 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → 𝑄 = ( 𝑍 Σg 𝑈 ) ) ) ) |