This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for psgndif . (Contributed by AV, 31-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnfix.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| psgnfix.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | ||
| psgnfix.s | ⊢ 𝑆 = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | ||
| psgnfix.z | ⊢ 𝑍 = ( SymGrp ‘ 𝑁 ) | ||
| psgnfix.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | ||
| Assertion | psgndiflemA | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfix.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 2 | psgnfix.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 3 | psgnfix.s | ⊢ 𝑆 = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 4 | psgnfix.z | ⊢ 𝑍 = ( SymGrp ‘ 𝑁 ) | |
| 5 | psgnfix.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | |
| 6 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑊 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑤 = 𝑊 → ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑟 ) ↔ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ) ) |
| 8 | 6 | oveq2d | ⊢ ( 𝑤 = 𝑊 → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 9 | fveq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 𝑖 ) = ( 𝑊 ‘ 𝑖 ) ) | |
| 10 | 9 | fveq1d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 11 | 10 | eqeq1d | ⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 12 | 11 | ralbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 13 | 12 | anbi2d | ⊢ ( 𝑤 = 𝑊 → ( ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ↔ ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) |
| 14 | 8 13 | raleqbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) |
| 15 | 7 14 | anbi12d | ⊢ ( 𝑤 = 𝑊 → ( ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) |
| 16 | 15 | rexbidv | ⊢ ( 𝑤 = 𝑊 → ( ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ↔ ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) |
| 17 | 16 | rspccv | ⊢ ( ∀ 𝑤 ∈ Word 𝑇 ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → ( 𝑊 ∈ Word 𝑇 → ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) |
| 18 | 2 5 | pmtrdifwrdel2 | ⊢ ( 𝐾 ∈ 𝑁 → ∀ 𝑤 ∈ Word 𝑇 ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) |
| 19 | 17 18 | syl11 | ⊢ ( 𝑊 ∈ Word 𝑇 → ( 𝐾 ∈ 𝑁 → ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) → ( 𝐾 ∈ 𝑁 → ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) |
| 21 | 20 | com12 | ⊢ ( 𝐾 ∈ 𝑁 → ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) → ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) |
| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) → ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ) |
| 23 | 22 | imp | ⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) → ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) |
| 24 | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) | |
| 25 | 24 | adantr | ⊢ ( ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) |
| 26 | 25 | ad3antlr | ⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) |
| 27 | simplll | ⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) → 𝑁 ∈ Fin ) | |
| 28 | 27 | ad2antlr | ⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → 𝑁 ∈ Fin ) |
| 29 | simplll | ⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → 𝑟 ∈ Word 𝑅 ) | |
| 30 | simprr3 | ⊢ ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) → 𝑈 ∈ Word 𝑅 ) | |
| 31 | 30 | adantr | ⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → 𝑈 ∈ Word 𝑅 ) |
| 32 | simplrl | ⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ) | |
| 33 | 3simpa | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) → ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) | |
| 34 | 33 | adantl | ⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) → ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) |
| 35 | 34 | ad2antlr | ⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) |
| 36 | simplrl | ⊢ ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ) | |
| 37 | 36 | adantr | ⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ) |
| 38 | simplrr | ⊢ ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | |
| 39 | 38 | adantr | ⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 40 | 1 2 3 4 5 | psgndiflemB | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) → ( ( 𝑟 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → 𝑄 = ( 𝑍 Σg 𝑟 ) ) ) ) |
| 41 | 40 | imp31 | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑟 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → 𝑄 = ( 𝑍 Σg 𝑟 ) ) |
| 42 | 41 | eqcomd | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ) ) ∧ ( 𝑟 ∈ Word 𝑅 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( 𝑍 Σg 𝑟 ) = 𝑄 ) |
| 43 | 32 35 29 37 39 42 | syl23anc | ⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ( 𝑍 Σg 𝑟 ) = 𝑄 ) |
| 44 | id | ⊢ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) → 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) | |
| 45 | 4 | eqcomi | ⊢ ( SymGrp ‘ 𝑁 ) = 𝑍 |
| 46 | 45 | oveq1i | ⊢ ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) = ( 𝑍 Σg 𝑈 ) |
| 47 | 44 46 | eqtrdi | ⊢ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) → 𝑄 = ( 𝑍 Σg 𝑈 ) ) |
| 48 | 47 | adantl | ⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → 𝑄 = ( 𝑍 Σg 𝑈 ) ) |
| 49 | 43 48 | eqtrd | ⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ( 𝑍 Σg 𝑟 ) = ( 𝑍 Σg 𝑈 ) ) |
| 50 | 4 5 28 29 31 49 | psgnuni | ⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) |
| 51 | 26 50 | eqtrd | ⊢ ( ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) |
| 52 | 51 | ex | ⊢ ( ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) ∧ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) ) |
| 53 | 52 | ex | ⊢ ( ( 𝑟 ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) ) → ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) ) ) |
| 54 | 53 | rexlimiva | ⊢ ( ∃ 𝑟 ∈ Word 𝑅 ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑟 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( ( 𝑟 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑟 ‘ 𝑖 ) ‘ 𝑛 ) ) ) → ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) ) ) |
| 55 | 23 54 | mpcom | ⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) ) |
| 56 | 55 | ex | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( 𝑆 Σg 𝑊 ) ∧ 𝑈 ∈ Word 𝑅 ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑈 ) → ( - 1 ↑ ( ♯ ‘ 𝑊 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑈 ) ) ) ) ) |