This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two combination of permutations moves an element of the intersection of the base sets of the permutations to the same element if each pair of corresponding permutations moves such an element to the same element. (Contributed by AV, 20-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsmsymgrfix.s | ⊢ 𝑆 = ( SymGrp ‘ 𝑁 ) | |
| gsmsymgrfix.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| gsmsymgreq.z | ⊢ 𝑍 = ( SymGrp ‘ 𝑀 ) | ||
| gsmsymgreq.p | ⊢ 𝑃 = ( Base ‘ 𝑍 ) | ||
| gsmsymgreq.i | ⊢ 𝐼 = ( 𝑁 ∩ 𝑀 ) | ||
| Assertion | gsmsymgreq | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑈 ∈ Word 𝑃 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsmsymgrfix.s | ⊢ 𝑆 = ( SymGrp ‘ 𝑁 ) | |
| 2 | gsmsymgrfix.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | gsmsymgreq.z | ⊢ 𝑍 = ( SymGrp ‘ 𝑀 ) | |
| 4 | gsmsymgreq.p | ⊢ 𝑃 = ( Base ‘ 𝑍 ) | |
| 5 | gsmsymgreq.i | ⊢ 𝐼 = ( 𝑁 ∩ 𝑀 ) | |
| 6 | fveq2 | ⊢ ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ∅ ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑤 = ∅ → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ ∅ ) ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑤 = ∅ ∧ 𝑢 = ∅ ) → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ ∅ ) ) ) |
| 9 | fveq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ‘ 𝑖 ) = ( ∅ ‘ 𝑖 ) ) | |
| 10 | 9 | fveq1d | ⊢ ( 𝑤 = ∅ → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 11 | fveq1 | ⊢ ( 𝑢 = ∅ → ( 𝑢 ‘ 𝑖 ) = ( ∅ ‘ 𝑖 ) ) | |
| 12 | 11 | fveq1d | ⊢ ( 𝑢 = ∅ → ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 13 | 10 12 | eqeqan12d | ⊢ ( ( 𝑤 = ∅ ∧ 𝑢 = ∅ ) → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 14 | 13 | ralbidv | ⊢ ( ( 𝑤 = ∅ ∧ 𝑢 = ∅ ) → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 15 | 8 14 | raleqbidv | ⊢ ( ( 𝑤 = ∅ ∧ 𝑢 = ∅ ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) ∀ 𝑛 ∈ 𝐼 ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 16 | oveq2 | ⊢ ( 𝑤 = ∅ → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg ∅ ) ) | |
| 17 | 16 | fveq1d | ⊢ ( 𝑤 = ∅ → ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) ) |
| 18 | oveq2 | ⊢ ( 𝑢 = ∅ → ( 𝑍 Σg 𝑢 ) = ( 𝑍 Σg ∅ ) ) | |
| 19 | 18 | fveq1d | ⊢ ( 𝑢 = ∅ → ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ) |
| 20 | 17 19 | eqeqan12d | ⊢ ( ( 𝑤 = ∅ ∧ 𝑢 = ∅ ) → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ↔ ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ) ) |
| 21 | 20 | ralbidv | ⊢ ( ( 𝑤 = ∅ ∧ 𝑢 = ∅ ) → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ) ) |
| 22 | 15 21 | imbi12d | ⊢ ( ( 𝑤 = ∅ ∧ 𝑢 = ∅ ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) ∀ 𝑛 ∈ 𝐼 ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ) ) ) |
| 23 | 22 | imbi2d | ⊢ ( ( 𝑤 = ∅ ∧ 𝑢 = ∅ ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) ∀ 𝑛 ∈ 𝐼 ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ) ) ) ) |
| 24 | fveq2 | ⊢ ( 𝑤 = 𝑥 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑥 ) ) | |
| 25 | 24 | oveq2d | ⊢ ( 𝑤 = 𝑥 → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝑤 = 𝑥 ∧ 𝑢 = 𝑦 ) → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) |
| 27 | fveq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ‘ 𝑖 ) = ( 𝑥 ‘ 𝑖 ) ) | |
| 28 | 27 | fveq1d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 29 | fveq1 | ⊢ ( 𝑢 = 𝑦 → ( 𝑢 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) | |
| 30 | 29 | fveq1d | ⊢ ( 𝑢 = 𝑦 → ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 31 | 28 30 | eqeqan12d | ⊢ ( ( 𝑤 = 𝑥 ∧ 𝑢 = 𝑦 ) → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 32 | 31 | ralbidv | ⊢ ( ( 𝑤 = 𝑥 ∧ 𝑢 = 𝑦 ) → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 33 | 26 32 | raleqbidv | ⊢ ( ( 𝑤 = 𝑥 ∧ 𝑢 = 𝑦 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 34 | oveq2 | ⊢ ( 𝑤 = 𝑥 → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg 𝑥 ) ) | |
| 35 | 34 | fveq1d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑆 Σg 𝑥 ) ‘ 𝑛 ) ) |
| 36 | oveq2 | ⊢ ( 𝑢 = 𝑦 → ( 𝑍 Σg 𝑢 ) = ( 𝑍 Σg 𝑦 ) ) | |
| 37 | 36 | fveq1d | ⊢ ( 𝑢 = 𝑦 → ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑦 ) ‘ 𝑛 ) ) |
| 38 | 35 37 | eqeqan12d | ⊢ ( ( 𝑤 = 𝑥 ∧ 𝑢 = 𝑦 ) → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ↔ ( ( 𝑆 Σg 𝑥 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑦 ) ‘ 𝑛 ) ) ) |
| 39 | 38 | ralbidv | ⊢ ( ( 𝑤 = 𝑥 ∧ 𝑢 = 𝑦 ) → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑥 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑦 ) ‘ 𝑛 ) ) ) |
| 40 | 33 39 | imbi12d | ⊢ ( ( 𝑤 = 𝑥 ∧ 𝑢 = 𝑦 ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑥 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑦 ) ‘ 𝑛 ) ) ) ) |
| 41 | 40 | imbi2d | ⊢ ( ( 𝑤 = 𝑥 ∧ 𝑢 = 𝑦 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑥 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑦 ) ‘ 𝑛 ) ) ) ) ) |
| 42 | fveq2 | ⊢ ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) | |
| 43 | 42 | oveq2d | ⊢ ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) ) |
| 44 | 43 | adantr | ⊢ ( ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ∧ 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) ) |
| 45 | fveq1 | ⊢ ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) → ( 𝑤 ‘ 𝑖 ) = ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ) | |
| 46 | 45 | fveq1d | ⊢ ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 47 | fveq1 | ⊢ ( 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) → ( 𝑢 ‘ 𝑖 ) = ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ) | |
| 48 | 47 | fveq1d | ⊢ ( 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) → ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 49 | 46 48 | eqeqan12d | ⊢ ( ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ∧ 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 50 | 49 | ralbidv | ⊢ ( ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ∧ 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 51 | 44 50 | raleqbidv | ⊢ ( ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ∧ 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 52 | oveq2 | ⊢ ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) | |
| 53 | 52 | fveq1d | ⊢ ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) → ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) ) |
| 54 | oveq2 | ⊢ ( 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) → ( 𝑍 Σg 𝑢 ) = ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ) | |
| 55 | 54 | fveq1d | ⊢ ( 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) → ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) |
| 56 | 53 55 | eqeqan12d | ⊢ ( ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ∧ 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ↔ ( ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) |
| 57 | 56 | ralbidv | ⊢ ( ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ∧ 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) |
| 58 | 51 57 | imbi12d | ⊢ ( ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ∧ 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
| 59 | 58 | imbi2d | ⊢ ( ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ∧ 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) ) ) |
| 60 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑊 ) ) | |
| 61 | 60 | oveq2d | ⊢ ( 𝑤 = 𝑊 → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 62 | fveq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 𝑖 ) = ( 𝑊 ‘ 𝑖 ) ) | |
| 63 | 62 | fveq1d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 64 | 63 | eqeq1d | ⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 65 | 64 | ralbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 66 | 61 65 | raleqbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 67 | oveq2 | ⊢ ( 𝑤 = 𝑊 → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg 𝑊 ) ) | |
| 68 | 67 | fveq1d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) ) |
| 69 | 68 | eqeq1d | ⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ↔ ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) |
| 70 | 69 | ralbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) |
| 71 | 66 70 | imbi12d | ⊢ ( 𝑤 = 𝑊 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) ) |
| 72 | 71 | imbi2d | ⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) ) ) |
| 73 | fveq1 | ⊢ ( 𝑢 = 𝑈 → ( 𝑢 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) | |
| 74 | 73 | fveq1d | ⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 75 | 74 | eqeq2d | ⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 76 | 75 | ralbidv | ⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 77 | 76 | ralbidv | ⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 78 | oveq2 | ⊢ ( 𝑢 = 𝑈 → ( 𝑍 Σg 𝑢 ) = ( 𝑍 Σg 𝑈 ) ) | |
| 79 | 78 | fveq1d | ⊢ ( 𝑢 = 𝑈 → ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) |
| 80 | 79 | eqeq2d | ⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ↔ ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) |
| 81 | 80 | ralbidv | ⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) |
| 82 | 77 81 | imbi12d | ⊢ ( 𝑢 = 𝑈 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) ) |
| 83 | 82 | imbi2d | ⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) ) ) |
| 84 | eleq2 | ⊢ ( 𝐼 = ( 𝑁 ∩ 𝑀 ) → ( 𝑛 ∈ 𝐼 ↔ 𝑛 ∈ ( 𝑁 ∩ 𝑀 ) ) ) | |
| 85 | elin | ⊢ ( 𝑛 ∈ ( 𝑁 ∩ 𝑀 ) ↔ ( 𝑛 ∈ 𝑁 ∧ 𝑛 ∈ 𝑀 ) ) | |
| 86 | 84 85 | bitrdi | ⊢ ( 𝐼 = ( 𝑁 ∩ 𝑀 ) → ( 𝑛 ∈ 𝐼 ↔ ( 𝑛 ∈ 𝑁 ∧ 𝑛 ∈ 𝑀 ) ) ) |
| 87 | simpl | ⊢ ( ( 𝑛 ∈ 𝑁 ∧ 𝑛 ∈ 𝑀 ) → 𝑛 ∈ 𝑁 ) | |
| 88 | 86 87 | biimtrdi | ⊢ ( 𝐼 = ( 𝑁 ∩ 𝑀 ) → ( 𝑛 ∈ 𝐼 → 𝑛 ∈ 𝑁 ) ) |
| 89 | 5 88 | ax-mp | ⊢ ( 𝑛 ∈ 𝐼 → 𝑛 ∈ 𝑁 ) |
| 90 | 89 | adantl | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ 𝑛 ∈ 𝐼 ) → 𝑛 ∈ 𝑁 ) |
| 91 | fvresi | ⊢ ( 𝑛 ∈ 𝑁 → ( ( I ↾ 𝑁 ) ‘ 𝑛 ) = 𝑛 ) | |
| 92 | 90 91 | syl | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ 𝑛 ∈ 𝐼 ) → ( ( I ↾ 𝑁 ) ‘ 𝑛 ) = 𝑛 ) |
| 93 | simpr | ⊢ ( ( 𝑛 ∈ 𝑁 ∧ 𝑛 ∈ 𝑀 ) → 𝑛 ∈ 𝑀 ) | |
| 94 | 86 93 | biimtrdi | ⊢ ( 𝐼 = ( 𝑁 ∩ 𝑀 ) → ( 𝑛 ∈ 𝐼 → 𝑛 ∈ 𝑀 ) ) |
| 95 | 5 94 | ax-mp | ⊢ ( 𝑛 ∈ 𝐼 → 𝑛 ∈ 𝑀 ) |
| 96 | 95 | adantl | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ 𝑛 ∈ 𝐼 ) → 𝑛 ∈ 𝑀 ) |
| 97 | fvresi | ⊢ ( 𝑛 ∈ 𝑀 → ( ( I ↾ 𝑀 ) ‘ 𝑛 ) = 𝑛 ) | |
| 98 | 96 97 | syl | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ 𝑛 ∈ 𝐼 ) → ( ( I ↾ 𝑀 ) ‘ 𝑛 ) = 𝑛 ) |
| 99 | 92 98 | eqtr4d | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ 𝑛 ∈ 𝐼 ) → ( ( I ↾ 𝑁 ) ‘ 𝑛 ) = ( ( I ↾ 𝑀 ) ‘ 𝑛 ) ) |
| 100 | 99 | ralrimiva | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ∀ 𝑛 ∈ 𝐼 ( ( I ↾ 𝑁 ) ‘ 𝑛 ) = ( ( I ↾ 𝑀 ) ‘ 𝑛 ) ) |
| 101 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 102 | 101 | gsum0 | ⊢ ( 𝑆 Σg ∅ ) = ( 0g ‘ 𝑆 ) |
| 103 | 1 | symgid | ⊢ ( 𝑁 ∈ Fin → ( I ↾ 𝑁 ) = ( 0g ‘ 𝑆 ) ) |
| 104 | 103 | adantr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( I ↾ 𝑁 ) = ( 0g ‘ 𝑆 ) ) |
| 105 | 102 104 | eqtr4id | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( 𝑆 Σg ∅ ) = ( I ↾ 𝑁 ) ) |
| 106 | 105 | fveq1d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( I ↾ 𝑁 ) ‘ 𝑛 ) ) |
| 107 | eqid | ⊢ ( 0g ‘ 𝑍 ) = ( 0g ‘ 𝑍 ) | |
| 108 | 107 | gsum0 | ⊢ ( 𝑍 Σg ∅ ) = ( 0g ‘ 𝑍 ) |
| 109 | 3 | symgid | ⊢ ( 𝑀 ∈ Fin → ( I ↾ 𝑀 ) = ( 0g ‘ 𝑍 ) ) |
| 110 | 109 | adantl | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( I ↾ 𝑀 ) = ( 0g ‘ 𝑍 ) ) |
| 111 | 108 110 | eqtr4id | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( 𝑍 Σg ∅ ) = ( I ↾ 𝑀 ) ) |
| 112 | 111 | fveq1d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) = ( ( I ↾ 𝑀 ) ‘ 𝑛 ) ) |
| 113 | 106 112 | eqeq12d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ↔ ( ( I ↾ 𝑁 ) ‘ 𝑛 ) = ( ( I ↾ 𝑀 ) ‘ 𝑛 ) ) ) |
| 114 | 113 | ralbidv | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( I ↾ 𝑁 ) ‘ 𝑛 ) = ( ( I ↾ 𝑀 ) ‘ 𝑛 ) ) ) |
| 115 | 100 114 | mpbird | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ) |
| 116 | 115 | a1d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) ∀ 𝑛 ∈ 𝐼 ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ) ) |
| 117 | 1 2 3 4 5 | gsmsymgreqlem2 | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑥 ∈ Word 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑦 ∈ Word 𝑃 ∧ 𝑝 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑥 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑦 ) ‘ 𝑛 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
| 118 | 117 | expcom | ⊢ ( ( ( 𝑥 ∈ Word 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑦 ∈ Word 𝑃 ∧ 𝑝 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑥 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑦 ) ‘ 𝑛 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) ) ) |
| 119 | 118 | a2d | ⊢ ( ( ( 𝑥 ∈ Word 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑦 ∈ Word 𝑃 ∧ 𝑝 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑥 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑦 ) ‘ 𝑛 ) ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) ) ) |
| 120 | 23 41 59 72 83 116 119 | wrd2ind | ⊢ ( ( 𝑊 ∈ Word 𝐵 ∧ 𝑈 ∈ Word 𝑃 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) ) |
| 121 | 120 | impcom | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑈 ∈ Word 𝑃 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) |