This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of permutations fixing one element also fixes this element. (Contributed by AV, 20-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsmsymgrfix.s | ⊢ 𝑆 = ( SymGrp ‘ 𝑁 ) | |
| gsmsymgrfix.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| Assertion | gsmsymgrfix | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ∧ 𝑊 ∈ Word 𝐵 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑊 ) ‘ 𝐾 ) = 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsmsymgrfix.s | ⊢ 𝑆 = ( SymGrp ‘ 𝑁 ) | |
| 2 | gsmsymgrfix.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | hasheq0 | ⊢ ( 𝑤 ∈ V → ( ( ♯ ‘ 𝑤 ) = 0 ↔ 𝑤 = ∅ ) ) | |
| 4 | 3 | elv | ⊢ ( ( ♯ ‘ 𝑤 ) = 0 ↔ 𝑤 = ∅ ) |
| 5 | 4 | biimpri | ⊢ ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = 0 ) |
| 6 | 5 | oveq2d | ⊢ ( 𝑤 = ∅ → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ 0 ) ) |
| 7 | fzo0 | ⊢ ( 0 ..^ 0 ) = ∅ | |
| 8 | 6 7 | eqtrdi | ⊢ ( 𝑤 = ∅ → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ∅ ) |
| 9 | fveq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ‘ 𝑖 ) = ( ∅ ‘ 𝑖 ) ) | |
| 10 | 9 | fveq1d | ⊢ ( 𝑤 = ∅ → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 ) ) |
| 11 | 10 | eqeq1d | ⊢ ( 𝑤 = ∅ → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 12 | 8 11 | raleqbidv | ⊢ ( 𝑤 = ∅ → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ∅ ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 13 | oveq2 | ⊢ ( 𝑤 = ∅ → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg ∅ ) ) | |
| 14 | 13 | fveq1d | ⊢ ( 𝑤 = ∅ → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = ( ( 𝑆 Σg ∅ ) ‘ 𝐾 ) ) |
| 15 | 14 | eqeq1d | ⊢ ( 𝑤 = ∅ → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( 𝑆 Σg ∅ ) ‘ 𝐾 ) = 𝐾 ) ) |
| 16 | 12 15 | imbi12d | ⊢ ( 𝑤 = ∅ → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ) ↔ ( ∀ 𝑖 ∈ ∅ ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ∅ ) ‘ 𝐾 ) = 𝐾 ) ) ) |
| 17 | 16 | imbi2d | ⊢ ( 𝑤 = ∅ → ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ∅ ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ∅ ) ‘ 𝐾 ) = 𝐾 ) ) ) ) |
| 18 | fveq2 | ⊢ ( 𝑤 = 𝑦 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑦 ) ) | |
| 19 | 18 | oveq2d | ⊢ ( 𝑤 = 𝑦 → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ) |
| 20 | fveq1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) | |
| 21 | 20 | fveq1d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) ) |
| 22 | 21 | eqeq1d | ⊢ ( 𝑤 = 𝑦 → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 23 | 19 22 | raleqbidv | ⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 24 | oveq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg 𝑦 ) ) | |
| 25 | 24 | fveq1d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) ) |
| 26 | 25 | eqeq1d | ⊢ ( 𝑤 = 𝑦 → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 27 | 23 26 | imbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) ) ) |
| 28 | 27 | imbi2d | ⊢ ( 𝑤 = 𝑦 → ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) ) ) ) |
| 29 | fveq2 | ⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) | |
| 30 | 29 | oveq2d | ⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) |
| 31 | fveq1 | ⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( 𝑤 ‘ 𝑖 ) = ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ) | |
| 32 | 31 | fveq1d | ⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) ) |
| 33 | 32 | eqeq1d | ⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 34 | 30 33 | raleqbidv | ⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 35 | oveq2 | ⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) | |
| 36 | 35 | fveq1d | ⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) ) |
| 37 | 36 | eqeq1d | ⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) = 𝐾 ) ) |
| 38 | 34 37 | imbi12d | ⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) = 𝐾 ) ) ) |
| 39 | 38 | imbi2d | ⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) = 𝐾 ) ) ) ) |
| 40 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑊 ) ) | |
| 41 | 40 | oveq2d | ⊢ ( 𝑤 = 𝑊 → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 42 | fveq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 𝑖 ) = ( 𝑊 ‘ 𝑖 ) ) | |
| 43 | 42 | fveq1d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) ) |
| 44 | 43 | eqeq1d | ⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 45 | 41 44 | raleqbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 46 | oveq2 | ⊢ ( 𝑤 = 𝑊 → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg 𝑊 ) ) | |
| 47 | 46 | fveq1d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = ( ( 𝑆 Σg 𝑊 ) ‘ 𝐾 ) ) |
| 48 | 47 | eqeq1d | ⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( 𝑆 Σg 𝑊 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 49 | 45 48 | imbi12d | ⊢ ( 𝑤 = 𝑊 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑊 ) ‘ 𝐾 ) = 𝐾 ) ) ) |
| 50 | 49 | imbi2d | ⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑊 ) ‘ 𝐾 ) = 𝐾 ) ) ) ) |
| 51 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 52 | 51 | gsum0 | ⊢ ( 𝑆 Σg ∅ ) = ( 0g ‘ 𝑆 ) |
| 53 | 1 | symgid | ⊢ ( 𝑁 ∈ Fin → ( I ↾ 𝑁 ) = ( 0g ‘ 𝑆 ) ) |
| 54 | 53 | adantr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( I ↾ 𝑁 ) = ( 0g ‘ 𝑆 ) ) |
| 55 | 52 54 | eqtr4id | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑆 Σg ∅ ) = ( I ↾ 𝑁 ) ) |
| 56 | 55 | fveq1d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ( 𝑆 Σg ∅ ) ‘ 𝐾 ) = ( ( I ↾ 𝑁 ) ‘ 𝐾 ) ) |
| 57 | fvresi | ⊢ ( 𝐾 ∈ 𝑁 → ( ( I ↾ 𝑁 ) ‘ 𝐾 ) = 𝐾 ) | |
| 58 | 57 | adantl | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ( I ↾ 𝑁 ) ‘ 𝐾 ) = 𝐾 ) |
| 59 | 56 58 | eqtrd | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ( 𝑆 Σg ∅ ) ‘ 𝐾 ) = 𝐾 ) |
| 60 | 59 | a1d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ∅ ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ∅ ) ‘ 𝐾 ) = 𝐾 ) ) |
| 61 | ccatws1len | ⊢ ( 𝑦 ∈ Word 𝐵 → ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) | |
| 62 | 61 | oveq2d | ⊢ ( 𝑦 ∈ Word 𝐵 → ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 63 | 62 | raleqdv | ⊢ ( 𝑦 ∈ Word 𝐵 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 64 | 63 | adantr | ⊢ ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 65 | 64 | adantr | ⊢ ( ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 66 | 1 2 | gsmsymgrfixlem1 | ⊢ ( ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) = 𝐾 ) ) |
| 67 | 66 | 3expb | ⊢ ( ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) = 𝐾 ) ) |
| 68 | 65 67 | sylbid | ⊢ ( ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) = 𝐾 ) ) |
| 69 | 68 | exp32 | ⊢ ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) = 𝐾 ) ) ) ) |
| 70 | 69 | a2d | ⊢ ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) = 𝐾 ) ) ) ) |
| 71 | 17 28 39 50 60 70 | wrdind | ⊢ ( 𝑊 ∈ Word 𝐵 → ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑊 ) ‘ 𝐾 ) = 𝐾 ) ) ) |
| 72 | 71 | com12 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑊 ∈ Word 𝐵 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑊 ) ‘ 𝐾 ) = 𝐾 ) ) ) |
| 73 | 72 | 3impia | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ∧ 𝑊 ∈ Word 𝐵 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑊 ) ‘ 𝐾 ) = 𝐾 ) ) |