This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for psgndif . (Contributed by AV, 27-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnfix.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| psgnfix.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
||
| psgnfix.s | |- S = ( SymGrp ` ( N \ { K } ) ) |
||
| psgnfix.z | |- Z = ( SymGrp ` N ) |
||
| psgnfix.r | |- R = ran ( pmTrsp ` N ) |
||
| Assertion | psgndiflemB | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) -> ( ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) -> Q = ( Z gsum U ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfix.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | psgnfix.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| 3 | psgnfix.s | |- S = ( SymGrp ` ( N \ { K } ) ) |
|
| 4 | psgnfix.z | |- Z = ( SymGrp ` N ) |
|
| 5 | psgnfix.r | |- R = ran ( pmTrsp ` N ) |
|
| 6 | elrabi | |- ( Q e. { q e. P | ( q ` K ) = K } -> Q e. P ) |
|
| 7 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 8 | 7 1 | symgbasf | |- ( Q e. P -> Q : N --> N ) |
| 9 | ffn | |- ( Q : N --> N -> Q Fn N ) |
|
| 10 | 6 8 9 | 3syl | |- ( Q e. { q e. P | ( q ` K ) = K } -> Q Fn N ) |
| 11 | 10 | ad3antlr | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> Q Fn N ) |
| 12 | simpl | |- ( ( N e. Fin /\ K e. N ) -> N e. Fin ) |
|
| 13 | 12 | adantr | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> N e. Fin ) |
| 14 | 13 | adantr | |- ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) -> N e. Fin ) |
| 15 | simp1 | |- ( ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) -> U e. Word R ) |
|
| 16 | 4 | eqcomi | |- ( SymGrp ` N ) = Z |
| 17 | 16 | fveq2i | |- ( Base ` ( SymGrp ` N ) ) = ( Base ` Z ) |
| 18 | 1 17 | eqtri | |- P = ( Base ` Z ) |
| 19 | 4 18 5 | gsmtrcl | |- ( ( N e. Fin /\ U e. Word R ) -> ( Z gsum U ) e. P ) |
| 20 | 14 15 19 | syl2an | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> ( Z gsum U ) e. P ) |
| 21 | 7 1 | symgbasf | |- ( ( Z gsum U ) e. P -> ( Z gsum U ) : N --> N ) |
| 22 | ffn | |- ( ( Z gsum U ) : N --> N -> ( Z gsum U ) Fn N ) |
|
| 23 | 20 21 22 | 3syl | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> ( Z gsum U ) Fn N ) |
| 24 | 12 | ad3antrrr | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> N e. Fin ) |
| 25 | simpr | |- ( ( N e. Fin /\ K e. N ) -> K e. N ) |
|
| 26 | 25 | ad3antrrr | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> K e. N ) |
| 27 | eqid | |- ( Base ` Z ) = ( Base ` Z ) |
|
| 28 | 5 4 27 | symgtrf | |- R C_ ( Base ` Z ) |
| 29 | sswrd | |- ( R C_ ( Base ` Z ) -> Word R C_ Word ( Base ` Z ) ) |
|
| 30 | 29 | sseld | |- ( R C_ ( Base ` Z ) -> ( U e. Word R -> U e. Word ( Base ` Z ) ) ) |
| 31 | 28 30 | ax-mp | |- ( U e. Word R -> U e. Word ( Base ` Z ) ) |
| 32 | 31 | 3ad2ant1 | |- ( ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) -> U e. Word ( Base ` Z ) ) |
| 33 | 32 | adantl | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> U e. Word ( Base ` Z ) ) |
| 34 | 24 26 33 | 3jca | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> ( N e. Fin /\ K e. N /\ U e. Word ( Base ` Z ) ) ) |
| 35 | simpl | |- ( ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) -> ( ( U ` i ) ` K ) = K ) |
|
| 36 | 35 | ralimi | |- ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( ( U ` i ) ` K ) = K ) |
| 37 | 36 | 3ad2ant3 | |- ( ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( ( U ` i ) ` K ) = K ) |
| 38 | 37 | adantl | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( ( U ` i ) ` K ) = K ) |
| 39 | oveq2 | |- ( ( # ` U ) = ( # ` W ) -> ( 0 ..^ ( # ` U ) ) = ( 0 ..^ ( # ` W ) ) ) |
|
| 40 | 39 | eqcoms | |- ( ( # ` W ) = ( # ` U ) -> ( 0 ..^ ( # ` U ) ) = ( 0 ..^ ( # ` W ) ) ) |
| 41 | 40 | raleqdv | |- ( ( # ` W ) = ( # ` U ) -> ( A. i e. ( 0 ..^ ( # ` U ) ) ( ( U ` i ) ` K ) = K <-> A. i e. ( 0 ..^ ( # ` W ) ) ( ( U ` i ) ` K ) = K ) ) |
| 42 | 41 | 3ad2ant2 | |- ( ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) -> ( A. i e. ( 0 ..^ ( # ` U ) ) ( ( U ` i ) ` K ) = K <-> A. i e. ( 0 ..^ ( # ` W ) ) ( ( U ` i ) ` K ) = K ) ) |
| 43 | 42 | adantl | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> ( A. i e. ( 0 ..^ ( # ` U ) ) ( ( U ` i ) ` K ) = K <-> A. i e. ( 0 ..^ ( # ` W ) ) ( ( U ` i ) ` K ) = K ) ) |
| 44 | 38 43 | mpbird | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> A. i e. ( 0 ..^ ( # ` U ) ) ( ( U ` i ) ` K ) = K ) |
| 45 | 4 27 | gsmsymgrfix | |- ( ( N e. Fin /\ K e. N /\ U e. Word ( Base ` Z ) ) -> ( A. i e. ( 0 ..^ ( # ` U ) ) ( ( U ` i ) ` K ) = K -> ( ( Z gsum U ) ` K ) = K ) ) |
| 46 | 34 44 45 | sylc | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> ( ( Z gsum U ) ` K ) = K ) |
| 47 | 46 | eqcomd | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> K = ( ( Z gsum U ) ` K ) ) |
| 48 | 47 | adantr | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k = K ) -> K = ( ( Z gsum U ) ` K ) ) |
| 49 | fveq2 | |- ( k = K -> ( Q ` k ) = ( Q ` K ) ) |
|
| 50 | fveq1 | |- ( q = Q -> ( q ` K ) = ( Q ` K ) ) |
|
| 51 | 50 | eqeq1d | |- ( q = Q -> ( ( q ` K ) = K <-> ( Q ` K ) = K ) ) |
| 52 | 51 | elrab | |- ( Q e. { q e. P | ( q ` K ) = K } <-> ( Q e. P /\ ( Q ` K ) = K ) ) |
| 53 | 52 | simprbi | |- ( Q e. { q e. P | ( q ` K ) = K } -> ( Q ` K ) = K ) |
| 54 | 53 | ad3antlr | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> ( Q ` K ) = K ) |
| 55 | 49 54 | sylan9eqr | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k = K ) -> ( Q ` k ) = K ) |
| 56 | fveq2 | |- ( k = K -> ( ( Z gsum U ) ` k ) = ( ( Z gsum U ) ` K ) ) |
|
| 57 | 56 | adantl | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k = K ) -> ( ( Z gsum U ) ` k ) = ( ( Z gsum U ) ` K ) ) |
| 58 | 48 55 57 | 3eqtr4d | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k = K ) -> ( Q ` k ) = ( ( Z gsum U ) ` k ) ) |
| 59 | 58 | ex | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> ( k = K -> ( Q ` k ) = ( ( Z gsum U ) ` k ) ) ) |
| 60 | 59 | adantr | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k e. N ) -> ( k = K -> ( Q ` k ) = ( ( Z gsum U ) ` k ) ) ) |
| 61 | 60 | com12 | |- ( k = K -> ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k e. N ) -> ( Q ` k ) = ( ( Z gsum U ) ` k ) ) ) |
| 62 | fveq1 | |- ( ( Q |` ( N \ { K } ) ) = ( S gsum W ) -> ( ( Q |` ( N \ { K } ) ) ` k ) = ( ( S gsum W ) ` k ) ) |
|
| 63 | 62 | adantl | |- ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) -> ( ( Q |` ( N \ { K } ) ) ` k ) = ( ( S gsum W ) ` k ) ) |
| 64 | 63 | ad3antlr | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k e. N ) -> ( ( Q |` ( N \ { K } ) ) ` k ) = ( ( S gsum W ) ` k ) ) |
| 65 | 64 | adantl | |- ( ( -. k = K /\ ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k e. N ) ) -> ( ( Q |` ( N \ { K } ) ) ` k ) = ( ( S gsum W ) ` k ) ) |
| 66 | simpr | |- ( ( ( N e. Fin /\ K e. N ) /\ k e. N ) -> k e. N ) |
|
| 67 | neqne | |- ( -. k = K -> k =/= K ) |
|
| 68 | 66 67 | anim12i | |- ( ( ( ( N e. Fin /\ K e. N ) /\ k e. N ) /\ -. k = K ) -> ( k e. N /\ k =/= K ) ) |
| 69 | eldifsn | |- ( k e. ( N \ { K } ) <-> ( k e. N /\ k =/= K ) ) |
|
| 70 | 68 69 | sylibr | |- ( ( ( ( N e. Fin /\ K e. N ) /\ k e. N ) /\ -. k = K ) -> k e. ( N \ { K } ) ) |
| 71 | 70 | fvresd | |- ( ( ( ( N e. Fin /\ K e. N ) /\ k e. N ) /\ -. k = K ) -> ( ( Q |` ( N \ { K } ) ) ` k ) = ( Q ` k ) ) |
| 72 | 71 | exp31 | |- ( ( N e. Fin /\ K e. N ) -> ( k e. N -> ( -. k = K -> ( ( Q |` ( N \ { K } ) ) ` k ) = ( Q ` k ) ) ) ) |
| 73 | 72 | ad3antrrr | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> ( k e. N -> ( -. k = K -> ( ( Q |` ( N \ { K } ) ) ` k ) = ( Q ` k ) ) ) ) |
| 74 | 73 | imp | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k e. N ) -> ( -. k = K -> ( ( Q |` ( N \ { K } ) ) ` k ) = ( Q ` k ) ) ) |
| 75 | 74 | impcom | |- ( ( -. k = K /\ ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k e. N ) ) -> ( ( Q |` ( N \ { K } ) ) ` k ) = ( Q ` k ) ) |
| 76 | fveq2 | |- ( n = k -> ( ( S gsum W ) ` n ) = ( ( S gsum W ) ` k ) ) |
|
| 77 | fveq2 | |- ( n = k -> ( ( Z gsum U ) ` n ) = ( ( Z gsum U ) ` k ) ) |
|
| 78 | 76 77 | eqeq12d | |- ( n = k -> ( ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) <-> ( ( S gsum W ) ` k ) = ( ( Z gsum U ) ` k ) ) ) |
| 79 | diffi | |- ( N e. Fin -> ( N \ { K } ) e. Fin ) |
|
| 80 | 79 | ancri | |- ( N e. Fin -> ( ( N \ { K } ) e. Fin /\ N e. Fin ) ) |
| 81 | 80 | adantr | |- ( ( N e. Fin /\ K e. N ) -> ( ( N \ { K } ) e. Fin /\ N e. Fin ) ) |
| 82 | 81 | ad3antrrr | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> ( ( N \ { K } ) e. Fin /\ N e. Fin ) ) |
| 83 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 84 | 2 3 83 | symgtrf | |- T C_ ( Base ` S ) |
| 85 | sswrd | |- ( T C_ ( Base ` S ) -> Word T C_ Word ( Base ` S ) ) |
|
| 86 | 85 | sseld | |- ( T C_ ( Base ` S ) -> ( W e. Word T -> W e. Word ( Base ` S ) ) ) |
| 87 | 84 86 | ax-mp | |- ( W e. Word T -> W e. Word ( Base ` S ) ) |
| 88 | 87 | ad2antrl | |- ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) -> W e. Word ( Base ` S ) ) |
| 89 | 88 | adantr | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> W e. Word ( Base ` S ) ) |
| 90 | simpr2 | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> ( # ` W ) = ( # ` U ) ) |
|
| 91 | 89 33 90 | 3jca | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> ( W e. Word ( Base ` S ) /\ U e. Word ( Base ` Z ) /\ ( # ` W ) = ( # ` U ) ) ) |
| 92 | 82 91 | jca | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> ( ( ( N \ { K } ) e. Fin /\ N e. Fin ) /\ ( W e. Word ( Base ` S ) /\ U e. Word ( Base ` Z ) /\ ( # ` W ) = ( # ` U ) ) ) ) |
| 93 | 92 | ad2antrl | |- ( ( -. k = K /\ ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k e. N ) ) -> ( ( ( N \ { K } ) e. Fin /\ N e. Fin ) /\ ( W e. Word ( Base ` S ) /\ U e. Word ( Base ` Z ) /\ ( # ` W ) = ( # ` U ) ) ) ) |
| 94 | simpr | |- ( ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) -> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) |
|
| 95 | 94 | ralimi | |- ( A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) |
| 96 | 95 | 3ad2ant3 | |- ( ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) |
| 97 | 96 | adantl | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) |
| 98 | 97 | ad2antrl | |- ( ( -. k = K /\ ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k e. N ) ) -> A. i e. ( 0 ..^ ( # ` W ) ) A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) |
| 99 | incom | |- ( ( N \ { K } ) i^i N ) = ( N i^i ( N \ { K } ) ) |
|
| 100 | indif | |- ( N i^i ( N \ { K } ) ) = ( N \ { K } ) |
|
| 101 | 99 100 | eqtri | |- ( ( N \ { K } ) i^i N ) = ( N \ { K } ) |
| 102 | 101 | eqcomi | |- ( N \ { K } ) = ( ( N \ { K } ) i^i N ) |
| 103 | 3 83 4 27 102 | gsmsymgreq | |- ( ( ( ( N \ { K } ) e. Fin /\ N e. Fin ) /\ ( W e. Word ( Base ` S ) /\ U e. Word ( Base ` Z ) /\ ( # ` W ) = ( # ` U ) ) ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. ( N \ { K } ) ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) |
| 104 | 93 98 103 | sylc | |- ( ( -. k = K /\ ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k e. N ) ) -> A. n e. ( N \ { K } ) ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) |
| 105 | 67 | anim2i | |- ( ( k e. N /\ -. k = K ) -> ( k e. N /\ k =/= K ) ) |
| 106 | 105 69 | sylibr | |- ( ( k e. N /\ -. k = K ) -> k e. ( N \ { K } ) ) |
| 107 | 106 | ex | |- ( k e. N -> ( -. k = K -> k e. ( N \ { K } ) ) ) |
| 108 | 107 | adantl | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k e. N ) -> ( -. k = K -> k e. ( N \ { K } ) ) ) |
| 109 | 108 | impcom | |- ( ( -. k = K /\ ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k e. N ) ) -> k e. ( N \ { K } ) ) |
| 110 | 78 104 109 | rspcdva | |- ( ( -. k = K /\ ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k e. N ) ) -> ( ( S gsum W ) ` k ) = ( ( Z gsum U ) ` k ) ) |
| 111 | 65 75 110 | 3eqtr3d | |- ( ( -. k = K /\ ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k e. N ) ) -> ( Q ` k ) = ( ( Z gsum U ) ` k ) ) |
| 112 | 111 | ex | |- ( -. k = K -> ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k e. N ) -> ( Q ` k ) = ( ( Z gsum U ) ` k ) ) ) |
| 113 | 61 112 | pm2.61i | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) /\ k e. N ) -> ( Q ` k ) = ( ( Z gsum U ) ` k ) ) |
| 114 | 11 23 113 | eqfnfvd | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) ) /\ ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) ) -> Q = ( Z gsum U ) ) |
| 115 | 114 | exp31 | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( W e. Word T /\ ( Q |` ( N \ { K } ) ) = ( S gsum W ) ) -> ( ( U e. Word R /\ ( # ` W ) = ( # ` U ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( ( ( U ` i ) ` K ) = K /\ A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) -> Q = ( Z gsum U ) ) ) ) |