This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgndif.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| psgndif.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | ||
| psgndif.z | ⊢ 𝑍 = ( pmSgn ‘ ( 𝑁 ∖ { 𝐾 } ) ) | ||
| Assertion | psgndif | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( 𝑆 ‘ 𝑄 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgndif.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 2 | psgndif.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | |
| 3 | psgndif.z | ⊢ 𝑍 = ( pmSgn ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 4 | eqid | ⊢ ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 5 | eqid | ⊢ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 6 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
| 7 | eqid | ⊢ ran ( pmTrsp ‘ 𝑁 ) = ran ( pmTrsp ‘ 𝑁 ) | |
| 8 | 1 4 5 6 7 | psgnfix2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ) |
| 9 | 8 | imp | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) |
| 10 | 9 | ad2antrr | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) |
| 11 | 1 4 5 6 7 | psgndiflemA | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ( 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ) |
| 12 | 11 | imp | ⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ ( 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
| 13 | 12 | 3anassrs | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
| 14 | 13 | adantlrr | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
| 15 | eqeq1 | ⊢ ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ↔ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) | |
| 16 | 15 | ad2antll | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ↔ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ↔ ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
| 18 | 14 17 | sylibrd | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) → ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) → 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
| 19 | 18 | ralrimiva | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ∀ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) → 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
| 20 | 10 19 | r19.29imd | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) → ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) |
| 21 | 20 | rexlimdva2 | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) → ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ) |
| 22 | 1 4 5 | psgnfix1 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) ) |
| 23 | 22 | imp | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) → ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) |
| 25 | simp-4l | ⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ) | |
| 26 | simpr | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) → 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 27 | 26 | adantr | ⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) → 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 28 | simpr | ⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) → ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) | |
| 29 | simp-4r | ⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) → 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) | |
| 30 | 27 28 29 | 3jca | ⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) → ( 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ) |
| 31 | simpr | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) → 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) | |
| 32 | 31 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) → 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) |
| 33 | 25 30 32 11 | syl3c | ⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) |
| 34 | 33 | eqcomd | ⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) |
| 35 | 34 | ex | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) → ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 36 | 35 | adantlrr | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) → ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 37 | eqeq1 | ⊢ ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ↔ ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) | |
| 38 | 37 | ad2antll | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ↔ ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 39 | 38 | adantr | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) → ( 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ↔ ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 40 | 36 39 | sylibrd | ⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ∧ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) → ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) → 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 41 | 40 | ralrimiva | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) → ∀ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) → 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 42 | 24 41 | r19.29imd | ⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ∧ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ) ∧ ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) → ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |
| 43 | 42 | rexlimdva2 | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) → ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 44 | 21 43 | impbid | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ↔ ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ) |
| 45 | 44 | iotabidv | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( ℩ 𝑠 ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) = ( ℩ 𝑠 ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ) |
| 46 | diffi | ⊢ ( 𝑁 ∈ Fin → ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ) | |
| 47 | 46 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ) |
| 48 | eqid | ⊢ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } | |
| 49 | eqid | ⊢ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) | |
| 50 | eqid | ⊢ ( 𝑁 ∖ { 𝐾 } ) = ( 𝑁 ∖ { 𝐾 } ) | |
| 51 | 1 48 49 50 | symgfixelsi | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
| 52 | 51 | adantll | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
| 53 | 5 49 4 3 | psgnvalfi | ⊢ ( ( ( 𝑁 ∖ { 𝐾 } ) ∈ Fin ∧ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) → ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( ℩ 𝑠 ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 54 | 47 52 53 | syl2anc | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( ℩ 𝑠 ∃ 𝑤 ∈ Word ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ( ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) = ( ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 55 | simpl | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → 𝑁 ∈ Fin ) | |
| 56 | elrabi | ⊢ ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → 𝑄 ∈ 𝑃 ) | |
| 57 | 6 1 7 2 | psgnvalfi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑆 ‘ 𝑄 ) = ( ℩ 𝑠 ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ) |
| 58 | 55 56 57 | syl2an | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑆 ‘ 𝑄 ) = ( ℩ 𝑠 ∃ 𝑟 ∈ Word ran ( pmTrsp ‘ 𝑁 ) ( 𝑄 = ( ( SymGrp ‘ 𝑁 ) Σg 𝑟 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑟 ) ) ) ) ) |
| 59 | 45 54 58 | 3eqtr4d | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) → ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( 𝑆 ‘ 𝑄 ) ) |
| 60 | 59 | ex | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑄 ∈ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } → ( 𝑍 ‘ ( 𝑄 ↾ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( 𝑆 ‘ 𝑄 ) ) ) |