This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group sum of transpositions of a finite set is a permutation, see also psgneldm2i . (Contributed by AV, 19-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsmtrcl.s | ⊢ 𝑆 = ( SymGrp ‘ 𝑁 ) | |
| gsmtrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| gsmtrcl.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝑁 ) | ||
| Assertion | gsmtrcl | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝑆 Σg 𝑊 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsmtrcl.s | ⊢ 𝑆 = ( SymGrp ‘ 𝑁 ) | |
| 2 | gsmtrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | gsmtrcl.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝑁 ) | |
| 4 | eqid | ⊢ ( pmSgn ‘ 𝑁 ) = ( pmSgn ‘ 𝑁 ) | |
| 5 | 1 3 4 | psgneldm2i | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝑆 Σg 𝑊 ) ∈ dom ( pmSgn ‘ 𝑁 ) ) |
| 6 | 1 4 2 | psgneldm | ⊢ ( ( 𝑆 Σg 𝑊 ) ∈ dom ( pmSgn ‘ 𝑁 ) ↔ ( ( 𝑆 Σg 𝑊 ) ∈ 𝐵 ∧ dom ( ( 𝑆 Σg 𝑊 ) ∖ I ) ∈ Fin ) ) |
| 7 | ax-1 | ⊢ ( ( 𝑆 Σg 𝑊 ) ∈ 𝐵 → ( ( 𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝑆 Σg 𝑊 ) ∈ 𝐵 ) ) | |
| 8 | 7 | adantr | ⊢ ( ( ( 𝑆 Σg 𝑊 ) ∈ 𝐵 ∧ dom ( ( 𝑆 Σg 𝑊 ) ∖ I ) ∈ Fin ) → ( ( 𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝑆 Σg 𝑊 ) ∈ 𝐵 ) ) |
| 9 | 6 8 | sylbi | ⊢ ( ( 𝑆 Σg 𝑊 ) ∈ dom ( pmSgn ‘ 𝑁 ) → ( ( 𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝑆 Σg 𝑊 ) ∈ 𝐵 ) ) |
| 10 | 5 9 | mpcom | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝑆 Σg 𝑊 ) ∈ 𝐵 ) |