This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of psercn2 as of 16-Apr-2025. (Contributed by Mario Carneiro, 3-Mar-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | ||
| pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | ||
| pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | ||
| pserulm.h | ⊢ 𝐻 = ( 𝑖 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) | ||
| pserulm.m | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| pserulm.l | ⊢ ( 𝜑 → 𝑀 < 𝑅 ) | ||
| pserulm.y | ⊢ ( 𝜑 → 𝑆 ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) | ||
| Assertion | psercn2OLD | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pserf.g | ⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) | |
| 2 | pserf.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝑆 ↦ Σ 𝑗 ∈ ℕ0 ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑗 ) ) | |
| 3 | pserf.a | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 4 | pserf.r | ⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝐺 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) | |
| 5 | pserulm.h | ⊢ 𝐻 = ( 𝑖 ∈ ℕ0 ↦ ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) | |
| 6 | pserulm.m | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 7 | pserulm.l | ⊢ ( 𝜑 → 𝑀 < 𝑅 ) | |
| 8 | pserulm.y | ⊢ ( 𝜑 → 𝑆 ⊆ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ) | |
| 9 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 10 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 11 | cnvimass | ⊢ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ dom abs | |
| 12 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 13 | 12 | fdmi | ⊢ dom abs = ℂ |
| 14 | 11 13 | sseqtri | ⊢ ( ◡ abs “ ( 0 [,] 𝑀 ) ) ⊆ ℂ |
| 15 | 8 14 | sstrdi | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑆 ⊆ ℂ ) |
| 17 | 16 | resmptd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ↾ 𝑆 ) = ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
| 18 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → 𝑦 ∈ ℂ ) | |
| 19 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑖 ) → 𝑘 ∈ ℕ0 ) | |
| 20 | 19 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → 𝑘 ∈ ℕ0 ) |
| 21 | 1 | pserval2 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 22 | 18 20 21 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝐺 ‘ 𝑦 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) |
| 23 | simpr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) | |
| 24 | 23 9 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
| 26 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 27 | 26 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 28 | 27 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 29 | expcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑘 ) ∈ ℂ ) | |
| 30 | 29 | adantll | ⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑘 ) ∈ ℂ ) |
| 31 | 28 30 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ∈ ℂ ) |
| 32 | 19 31 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ∈ ℂ ) |
| 33 | 22 25 32 | fsumser | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑦 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑖 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) = ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) |
| 34 | 33 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑖 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ) |
| 35 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 36 | 35 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 37 | 36 | a1i | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 38 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 0 ... 𝑖 ) ∈ Fin ) | |
| 39 | 36 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 40 | ffvelcdm | ⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) | |
| 41 | 26 19 40 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 42 | 39 39 41 | cnmptc | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝑦 ∈ ℂ ↦ ( 𝐴 ‘ 𝑘 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 43 | 19 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → 𝑘 ∈ ℕ0 ) |
| 44 | 35 | expcn | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑘 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 45 | 43 44 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 𝑘 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 46 | 35 | mulcn | ⊢ · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 47 | 46 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 48 | 39 42 45 47 | cnmpt12f | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝑦 ∈ ℂ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 49 | 35 37 38 48 | fsumcn | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑖 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 50 | 35 | cncfcn1 | ⊢ ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 51 | 49 50 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑖 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 52 | 34 51 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 53 | rescncf | ⊢ ( 𝑆 ⊆ ℂ → ( ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ↾ 𝑆 ) ∈ ( 𝑆 –cn→ ℂ ) ) ) | |
| 54 | 16 52 53 | sylc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑦 ∈ ℂ ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ↾ 𝑆 ) ∈ ( 𝑆 –cn→ ℂ ) ) |
| 55 | 17 54 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ∈ 𝑆 ↦ ( seq 0 ( + , ( 𝐺 ‘ 𝑦 ) ) ‘ 𝑖 ) ) ∈ ( 𝑆 –cn→ ℂ ) ) |
| 56 | 55 5 | fmptd | ⊢ ( 𝜑 → 𝐻 : ℕ0 ⟶ ( 𝑆 –cn→ ℂ ) ) |
| 57 | 1 2 3 4 5 6 7 8 | pserulm | ⊢ ( 𝜑 → 𝐻 ( ⇝𝑢 ‘ 𝑆 ) 𝐹 ) |
| 58 | 9 10 56 57 | ulmcn | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 –cn→ ℂ ) ) |