This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power function on complex numbers, for fixed exponent N , is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 23-Aug-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | expcn.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| Assertion | expcn | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcn.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | oveq2 | ⊢ ( 𝑛 = 0 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 0 ) ) | |
| 3 | 2 | mpteq2dv | ⊢ ( 𝑛 = 0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 0 ) ) ) |
| 4 | 3 | eleq1d | ⊢ ( 𝑛 = 0 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 0 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 5 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑘 ) ) | |
| 6 | 5 | mpteq2dv | ⊢ ( 𝑛 = 𝑘 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) |
| 7 | 6 | eleq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 8 | oveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) | |
| 9 | 8 | mpteq2dv | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) |
| 10 | 9 | eleq1d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑁 ) ) | |
| 12 | 11 | mpteq2dv | ⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) |
| 13 | 12 | eleq1d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 14 | exp0 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ 0 ) = 1 ) | |
| 15 | 14 | mpteq2ia | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 0 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
| 16 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 17 | 16 | a1i | ⊢ ( ⊤ → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
| 18 | 1cnd | ⊢ ( ⊤ → 1 ∈ ℂ ) | |
| 19 | 17 17 18 | cnmptc | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ 1 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 20 | 19 | mptru | ⊢ ( 𝑥 ∈ ℂ ↦ 1 ) ∈ ( 𝐽 Cn 𝐽 ) |
| 21 | 15 20 | eqeltri | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 0 ) ) ∈ ( 𝐽 Cn 𝐽 ) |
| 22 | oveq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ↑ ( 𝑘 + 1 ) ) = ( 𝑛 ↑ ( 𝑘 + 1 ) ) ) | |
| 23 | 22 | cbvmptv | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) = ( 𝑛 ∈ ℂ ↦ ( 𝑛 ↑ ( 𝑘 + 1 ) ) ) |
| 24 | id | ⊢ ( 𝑛 ∈ ℂ → 𝑛 ∈ ℂ ) | |
| 25 | simpl | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → 𝑘 ∈ ℕ0 ) | |
| 26 | expp1 | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑛 ↑ ( 𝑘 + 1 ) ) = ( ( 𝑛 ↑ 𝑘 ) · 𝑛 ) ) | |
| 27 | expcl | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑛 ↑ 𝑘 ) ∈ ℂ ) | |
| 28 | simpl | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → 𝑛 ∈ ℂ ) | |
| 29 | ovmpot | ⊢ ( ( ( 𝑛 ↑ 𝑘 ) ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( 𝑛 ↑ 𝑘 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑛 ) = ( ( 𝑛 ↑ 𝑘 ) · 𝑛 ) ) | |
| 30 | 27 28 29 | syl2anc | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ↑ 𝑘 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑛 ) = ( ( 𝑛 ↑ 𝑘 ) · 𝑛 ) ) |
| 31 | 26 30 | eqtr4d | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑛 ↑ ( 𝑘 + 1 ) ) = ( ( 𝑛 ↑ 𝑘 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑛 ) ) |
| 32 | 24 25 31 | syl2anr | ⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ∧ 𝑛 ∈ ℂ ) → ( 𝑛 ↑ ( 𝑘 + 1 ) ) = ( ( 𝑛 ↑ 𝑘 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑛 ) ) |
| 33 | 32 | mpteq2dva | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑛 ∈ ℂ ↦ ( 𝑛 ↑ ( 𝑘 + 1 ) ) ) = ( 𝑛 ∈ ℂ ↦ ( ( 𝑛 ↑ 𝑘 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑛 ) ) ) |
| 34 | 23 33 | eqtrid | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) = ( 𝑛 ∈ ℂ ↦ ( ( 𝑛 ↑ 𝑘 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑛 ) ) ) |
| 35 | 16 | a1i | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
| 36 | oveq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ↑ 𝑘 ) = ( 𝑛 ↑ 𝑘 ) ) | |
| 37 | 36 | cbvmptv | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) = ( 𝑛 ∈ ℂ ↦ ( 𝑛 ↑ 𝑘 ) ) |
| 38 | simpr | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) | |
| 39 | 37 38 | eqeltrrid | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑛 ∈ ℂ ↦ ( 𝑛 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 40 | 35 | cnmptid | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑛 ∈ ℂ ↦ 𝑛 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 41 | 1 | mpomulcn | ⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 42 | 41 | a1i | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 43 | 35 39 40 42 | cnmpt12f | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑛 ∈ ℂ ↦ ( ( 𝑛 ↑ 𝑘 ) ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑛 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 44 | 34 43 | eqeltrd | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 45 | 44 | ex | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 46 | 4 7 10 13 21 45 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |