This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for B normally contains free variables k and x to index it. (Contributed by NM, 8-Aug-2007) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcn.3 | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| fsumcn.4 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| fsumcn.5 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fsumcn.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| Assertion | fsumcn | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcn.3 | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 2 | fsumcn.4 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | fsumcn.5 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 4 | fsumcn.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 5 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 6 | sseq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) | |
| 7 | sumeq1 | ⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) | |
| 8 | 7 | mpteq2dv | ⊢ ( 𝑤 = ∅ → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ∅ 𝐵 ) ) |
| 9 | 8 | eleq1d | ⊢ ( 𝑤 = ∅ → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ∅ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 10 | 6 9 | imbi12d | ⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ↔ ( ∅ ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ∅ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ∅ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) ) |
| 12 | sseq1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) | |
| 13 | sumeq1 | ⊢ ( 𝑤 = 𝑦 → Σ 𝑘 ∈ 𝑤 𝐵 = Σ 𝑘 ∈ 𝑦 𝐵 ) | |
| 14 | 13 | mpteq2dv | ⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 15 | 14 | eleq1d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 16 | 12 15 | imbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ↔ ( 𝑦 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 17 | 16 | imbi2d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ↔ ( 𝜑 → ( 𝑦 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) ) |
| 18 | sseq1 | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑤 ⊆ 𝐴 ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) | |
| 19 | sumeq1 | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑤 𝐵 = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) | |
| 20 | 19 | mpteq2dv | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) |
| 21 | 20 | eleq1d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 22 | 18 21 | imbi12d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑤 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 23 | 22 | imbi2d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ↔ ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) ) |
| 24 | sseq1 | ⊢ ( 𝑤 = 𝐴 → ( 𝑤 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 25 | sumeq1 | ⊢ ( 𝑤 = 𝐴 → Σ 𝑘 ∈ 𝑤 𝐵 = Σ 𝑘 ∈ 𝐴 𝐵 ) | |
| 26 | 25 | mpteq2dv | ⊢ ( 𝑤 = 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 27 | 26 | eleq1d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 28 | 24 27 | imbi12d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝑤 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ↔ ( 𝐴 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 29 | 28 | imbi2d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑤 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ↔ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) ) |
| 30 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 | |
| 31 | 30 | mpteq2i | ⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ∅ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 0 ) |
| 32 | 1 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 33 | 32 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 34 | 0cnd | ⊢ ( 𝜑 → 0 ∈ ℂ ) | |
| 35 | 2 33 34 | cnmptc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 0 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 36 | 31 35 | eqeltrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ∅ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 37 | 36 | a1d | ⊢ ( 𝜑 → ( ∅ ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ∅ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 38 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 39 | sstr | ⊢ ( ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → 𝑦 ⊆ 𝐴 ) | |
| 40 | 38 39 | mpan | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → 𝑦 ⊆ 𝐴 ) |
| 41 | 40 | imim1i | ⊢ ( ( 𝑦 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 42 | simplr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 43 | disjsn | ⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) | |
| 44 | 42 43 | sylibr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 45 | eqidd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) ) | |
| 46 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐴 ∈ Fin ) |
| 47 | simprl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) | |
| 48 | 46 47 | ssfid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 49 | simplll | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝜑 ) | |
| 50 | 47 | sselda | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑘 ∈ 𝐴 ) |
| 51 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑥 ∈ 𝑋 ) | |
| 52 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 53 | 32 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 54 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) | |
| 55 | 52 53 4 54 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) |
| 56 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) | |
| 57 | 56 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) |
| 58 | 55 57 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ ) |
| 59 | rsp | ⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ → ( 𝑥 ∈ 𝑋 → 𝐵 ∈ ℂ ) ) | |
| 60 | 58 59 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 → 𝐵 ∈ ℂ ) ) |
| 61 | 60 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 62 | 49 50 51 61 | syl21anc | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) ∧ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝐵 ∈ ℂ ) |
| 63 | 44 45 48 62 | fsumsplit | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑦 𝐵 + Σ 𝑘 ∈ { 𝑧 } 𝐵 ) ) |
| 64 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) | |
| 65 | 64 | unssbd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → { 𝑧 } ⊆ 𝐴 ) |
| 66 | vex | ⊢ 𝑧 ∈ V | |
| 67 | 66 | snss | ⊢ ( 𝑧 ∈ 𝐴 ↔ { 𝑧 } ⊆ 𝐴 ) |
| 68 | 65 67 | sylibr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 69 | 68 | adantrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑧 ∈ 𝐴 ) |
| 70 | 60 | impancom | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐴 → 𝐵 ∈ ℂ ) ) |
| 71 | 70 | ralrimiv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 72 | 71 | ad2ant2rl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 73 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 | |
| 74 | 73 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 75 | csbeq1a | ⊢ ( 𝑘 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) | |
| 76 | 75 | eleq1d | ⊢ ( 𝑘 = 𝑧 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 77 | 74 76 | rspc | ⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 78 | 69 72 77 | sylc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 79 | sumsns | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ { 𝑧 } 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) | |
| 80 | 69 78 79 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → Σ 𝑘 ∈ { 𝑧 } 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 81 | 80 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → ( Σ 𝑘 ∈ 𝑦 𝐵 + Σ 𝑘 ∈ { 𝑧 } 𝐵 ) = ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 82 | 63 81 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 83 | 82 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 84 | 83 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 85 | 84 | adantrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 86 | nfcv | ⊢ Ⅎ 𝑤 ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) | |
| 87 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 88 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 | |
| 89 | 87 88 | nfsum | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 |
| 90 | nfcv | ⊢ Ⅎ 𝑥 + | |
| 91 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 92 | 91 88 | nfcsbw | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 |
| 93 | 89 90 92 | nfov | ⊢ Ⅎ 𝑥 ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 94 | csbeq1a | ⊢ ( 𝑥 = 𝑤 → 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) | |
| 95 | 94 | sumeq2sdv | ⊢ ( 𝑥 = 𝑤 → Σ 𝑘 ∈ 𝑦 𝐵 = Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 96 | 94 | csbeq2dv | ⊢ ( 𝑥 = 𝑤 → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 97 | 95 96 | oveq12d | ⊢ ( 𝑥 = 𝑤 → ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) = ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ) |
| 98 | 86 93 97 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ 𝑦 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ) |
| 99 | 85 98 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( 𝑤 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ) ) |
| 100 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 101 | nfcv | ⊢ Ⅎ 𝑤 Σ 𝑘 ∈ 𝑦 𝐵 | |
| 102 | 101 89 95 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) = ( 𝑤 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 103 | simprr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 104 | 102 103 | eqeltrrid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝑤 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 105 | nfcv | ⊢ Ⅎ 𝑤 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 | |
| 106 | 105 92 96 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) = ( 𝑤 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
| 107 | 68 | adantrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → 𝑧 ∈ 𝐴 ) |
| 108 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 109 | 108 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 110 | nfcv | ⊢ Ⅎ 𝑘 𝑋 | |
| 111 | 110 73 | nfmpt | ⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 112 | 111 | nfel1 | ⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) |
| 113 | 75 | mpteq2dv | ⊢ ( 𝑘 = 𝑧 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 114 | 113 | eleq1d | ⊢ ( 𝑘 = 𝑧 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 115 | 112 114 | rspc | ⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 116 | 107 109 115 | sylc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 117 | 106 116 | eqeltrrid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝑤 ∈ 𝑋 ↦ ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 118 | 1 | addcn | ⊢ + ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 119 | 118 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → + ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
| 120 | 100 104 117 119 | cnmpt12f | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝑤 ∈ 𝑋 ↦ ( Σ 𝑘 ∈ 𝑦 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 + ⦋ 𝑧 / 𝑘 ⦌ ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 121 | 99 120 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 122 | 121 | exp32 | ⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 123 | 122 | a2d | ⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 124 | 41 123 | syl5 | ⊢ ( ( 𝜑 ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 125 | 124 | expcom | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( 𝜑 → ( ( 𝑦 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) ) |
| 126 | 125 | adantl | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝜑 → ( ( 𝑦 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) ) |
| 127 | 126 | a2d | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝜑 → ( 𝑦 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) ) |
| 128 | 11 17 23 29 37 127 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 129 | 3 128 | mpcom | ⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 130 | 5 129 | mpi | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |