This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodmo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| prodmo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| prodrb.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| prodrb.5 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| prodrb.6 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | ||
| prodrb.7 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) | ||
| Assertion | prodrb | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodmo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) | |
| 2 | prodmo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | prodrb.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | prodrb.5 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 5 | prodrb.6 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 6 | prodrb.7 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) | |
| 7 | 1 2 3 4 5 6 | prodrblem2 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ) ) |
| 8 | 1 2 4 3 6 5 | prodrblem2 | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ) ) |
| 9 | 8 | bicomd | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ) ) |
| 10 | uztric | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) | |
| 11 | 3 4 10 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |
| 12 | 7 9 11 | mpjaodan | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( · , 𝐹 ) ⇝ 𝐶 ) ) |