This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of an infinite product. (Contributed by Scott Fenton, 15-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodfn0.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| prodfn0.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| prodfn0.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ≠ 0 ) | ||
| prodfrec.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | prodfrec | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑁 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodfn0.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | prodfn0.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 3 | prodfn0.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ≠ 0 ) | |
| 4 | prodfrec.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( 𝐹 ‘ 𝑘 ) ) ) | |
| 5 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 7 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑚 ) = ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑀 ) ) | |
| 8 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝑚 = 𝑀 → ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) ) ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝑚 = 𝑀 → ( ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑚 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ) ↔ ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑀 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) ) ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝑚 = 𝑀 → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑚 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑀 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) ) ) ) ) |
| 12 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑚 ) = ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) ) | |
| 13 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝑚 = 𝑛 → ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( 𝑚 = 𝑛 → ( ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑚 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ) ↔ ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑚 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ) |
| 17 | fveq2 | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑚 ) = ( seq 𝑀 ( · , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 18 | fveq2 | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 19 | 18 | oveq2d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 20 | 17 19 | eqeq12d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑚 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ) ↔ ( seq 𝑀 ( · , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 21 | 20 | imbi2d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑚 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 22 | fveq2 | ⊢ ( 𝑚 = 𝑁 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑚 ) = ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑁 ) ) | |
| 23 | fveq2 | ⊢ ( 𝑚 = 𝑁 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) | |
| 24 | 23 | oveq2d | ⊢ ( 𝑚 = 𝑁 → ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) ) |
| 25 | 22 24 | eqeq12d | ⊢ ( 𝑚 = 𝑁 → ( ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑚 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ) ↔ ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑁 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 26 | 25 | imbi2d | ⊢ ( 𝑚 = 𝑁 → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑚 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑁 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
| 27 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 28 | 1 27 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 29 | fveq2 | ⊢ ( 𝑘 = 𝑀 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑀 ) ) | |
| 30 | fveq2 | ⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 31 | 30 | oveq2d | ⊢ ( 𝑘 = 𝑀 → ( 1 / ( 𝐹 ‘ 𝑘 ) ) = ( 1 / ( 𝐹 ‘ 𝑀 ) ) ) |
| 32 | 29 31 | eqeq12d | ⊢ ( 𝑘 = 𝑀 → ( ( 𝐺 ‘ 𝑘 ) = ( 1 / ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ 𝑀 ) = ( 1 / ( 𝐹 ‘ 𝑀 ) ) ) ) |
| 33 | 32 | imbi2d | ⊢ ( 𝑘 = 𝑀 → ( ( 𝜑 → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) = ( 1 / ( 𝐹 ‘ 𝑀 ) ) ) ) ) |
| 34 | 4 | expcom | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 35 | 33 34 | vtoclga | ⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( 𝐺 ‘ 𝑀 ) = ( 1 / ( 𝐹 ‘ 𝑀 ) ) ) ) |
| 36 | 28 35 | mpcom | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) = ( 1 / ( 𝐹 ‘ 𝑀 ) ) ) |
| 37 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 38 | 1 37 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 39 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) | |
| 40 | 38 39 | syl | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) |
| 41 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 42 | 38 41 | syl | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 43 | 42 | oveq2d | ⊢ ( 𝜑 → ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) ) = ( 1 / ( 𝐹 ‘ 𝑀 ) ) ) |
| 44 | 36 40 43 | 3eqtr4d | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑀 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) ) ) |
| 45 | 44 | a1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑀 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑀 ) ) ) ) |
| 46 | oveq1 | ⊢ ( ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) → ( ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) · ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) = ( ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 47 | 46 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) · ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) = ( ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 48 | fzofzp1 | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) | |
| 49 | fveq2 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) | |
| 50 | fveq2 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 51 | 50 | oveq2d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 1 / ( 𝐹 ‘ 𝑘 ) ) = ( 1 / ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 52 | 49 51 | eqeq12d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐺 ‘ 𝑘 ) = ( 1 / ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ ( 𝑛 + 1 ) ) = ( 1 / ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 53 | 52 | imbi2d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( 𝜑 → ( 𝐺 ‘ ( 𝑛 + 1 ) ) = ( 1 / ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 54 | 53 34 | vtoclga | ⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( 𝐺 ‘ ( 𝑛 + 1 ) ) = ( 1 / ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 55 | 48 54 | syl | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝜑 → ( 𝐺 ‘ ( 𝑛 + 1 ) ) = ( 1 / ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 56 | 55 | impcom | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺 ‘ ( 𝑛 + 1 ) ) = ( 1 / ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 57 | 56 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) = ( ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 1 / ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 58 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → 1 ∈ ℂ ) | |
| 59 | elfzouz | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 60 | 59 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 61 | elfzouz2 | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) | |
| 62 | fzss2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 63 | 61 62 | syl | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 64 | 63 | sselda | ⊢ ( ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 65 | 64 2 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 66 | 65 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 67 | mulcl | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · 𝑥 ) ∈ ℂ ) | |
| 68 | 67 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑘 · 𝑥 ) ∈ ℂ ) |
| 69 | 60 66 68 | seqcl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) |
| 70 | 50 | eleq1d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) ) |
| 71 | 70 | imbi2d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) ) ) |
| 72 | 2 | expcom | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) |
| 73 | 71 72 | vtoclga | ⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) ) |
| 74 | 48 73 | syl | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) ) |
| 75 | 74 | impcom | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 76 | 64 3 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) ) → ( 𝐹 ‘ 𝑘 ) ≠ 0 ) |
| 77 | 76 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ≠ 0 ) |
| 78 | 60 66 77 | prodfn0 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 ) |
| 79 | 50 | neeq1d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ≠ 0 ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≠ 0 ) ) |
| 80 | 79 | imbi2d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ≠ 0 ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≠ 0 ) ) ) |
| 81 | 3 | expcom | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ≠ 0 ) ) |
| 82 | 80 81 | vtoclga | ⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≠ 0 ) ) |
| 83 | 48 82 | syl | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≠ 0 ) ) |
| 84 | 83 | impcom | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≠ 0 ) |
| 85 | 58 69 58 75 78 84 | divmuldivd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 1 / ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( 1 · 1 ) / ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 86 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 87 | 86 | oveq1i | ⊢ ( ( 1 · 1 ) / ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) = ( 1 / ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 88 | 85 87 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 1 / ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) = ( 1 / ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 89 | 57 88 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) = ( 1 / ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 90 | 89 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) · ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) = ( 1 / ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 91 | 47 90 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) · ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) = ( 1 / ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 92 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( · , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) · ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 93 | 59 92 | syl | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( seq 𝑀 ( · , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) · ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 94 | 93 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( seq 𝑀 ( · , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) · ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 95 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 96 | 59 95 | syl | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 97 | 96 | oveq2d | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( 1 / ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 98 | 97 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( 1 / ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) · ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 99 | 91 94 98 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( seq 𝑀 ( · , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 100 | 99 | 3exp | ⊢ ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) → ( seq 𝑀 ( · , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 101 | 100 | com12 | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝜑 → ( ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) → ( seq 𝑀 ( · , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 102 | 101 | a2d | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑛 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) ) → ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 103 | 11 16 21 26 45 102 | fzind2 | ⊢ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑁 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 104 | 6 103 | mpcom | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑁 ) = ( 1 / ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) ) |