This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of an infinite product. (Contributed by Scott Fenton, 15-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodfn0.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| prodfn0.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
||
| prodfn0.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) =/= 0 ) |
||
| prodfrec.4 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) = ( 1 / ( F ` k ) ) ) |
||
| Assertion | prodfrec | |- ( ph -> ( seq M ( x. , G ) ` N ) = ( 1 / ( seq M ( x. , F ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodfn0.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | prodfn0.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. CC ) |
|
| 3 | prodfn0.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) =/= 0 ) |
|
| 4 | prodfrec.4 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( G ` k ) = ( 1 / ( F ` k ) ) ) |
|
| 5 | eluzfz2 | |- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
|
| 6 | 1 5 | syl | |- ( ph -> N e. ( M ... N ) ) |
| 7 | fveq2 | |- ( m = M -> ( seq M ( x. , G ) ` m ) = ( seq M ( x. , G ) ` M ) ) |
|
| 8 | fveq2 | |- ( m = M -> ( seq M ( x. , F ) ` m ) = ( seq M ( x. , F ) ` M ) ) |
|
| 9 | 8 | oveq2d | |- ( m = M -> ( 1 / ( seq M ( x. , F ) ` m ) ) = ( 1 / ( seq M ( x. , F ) ` M ) ) ) |
| 10 | 7 9 | eqeq12d | |- ( m = M -> ( ( seq M ( x. , G ) ` m ) = ( 1 / ( seq M ( x. , F ) ` m ) ) <-> ( seq M ( x. , G ) ` M ) = ( 1 / ( seq M ( x. , F ) ` M ) ) ) ) |
| 11 | 10 | imbi2d | |- ( m = M -> ( ( ph -> ( seq M ( x. , G ) ` m ) = ( 1 / ( seq M ( x. , F ) ` m ) ) ) <-> ( ph -> ( seq M ( x. , G ) ` M ) = ( 1 / ( seq M ( x. , F ) ` M ) ) ) ) ) |
| 12 | fveq2 | |- ( m = n -> ( seq M ( x. , G ) ` m ) = ( seq M ( x. , G ) ` n ) ) |
|
| 13 | fveq2 | |- ( m = n -> ( seq M ( x. , F ) ` m ) = ( seq M ( x. , F ) ` n ) ) |
|
| 14 | 13 | oveq2d | |- ( m = n -> ( 1 / ( seq M ( x. , F ) ` m ) ) = ( 1 / ( seq M ( x. , F ) ` n ) ) ) |
| 15 | 12 14 | eqeq12d | |- ( m = n -> ( ( seq M ( x. , G ) ` m ) = ( 1 / ( seq M ( x. , F ) ` m ) ) <-> ( seq M ( x. , G ) ` n ) = ( 1 / ( seq M ( x. , F ) ` n ) ) ) ) |
| 16 | 15 | imbi2d | |- ( m = n -> ( ( ph -> ( seq M ( x. , G ) ` m ) = ( 1 / ( seq M ( x. , F ) ` m ) ) ) <-> ( ph -> ( seq M ( x. , G ) ` n ) = ( 1 / ( seq M ( x. , F ) ` n ) ) ) ) ) |
| 17 | fveq2 | |- ( m = ( n + 1 ) -> ( seq M ( x. , G ) ` m ) = ( seq M ( x. , G ) ` ( n + 1 ) ) ) |
|
| 18 | fveq2 | |- ( m = ( n + 1 ) -> ( seq M ( x. , F ) ` m ) = ( seq M ( x. , F ) ` ( n + 1 ) ) ) |
|
| 19 | 18 | oveq2d | |- ( m = ( n + 1 ) -> ( 1 / ( seq M ( x. , F ) ` m ) ) = ( 1 / ( seq M ( x. , F ) ` ( n + 1 ) ) ) ) |
| 20 | 17 19 | eqeq12d | |- ( m = ( n + 1 ) -> ( ( seq M ( x. , G ) ` m ) = ( 1 / ( seq M ( x. , F ) ` m ) ) <-> ( seq M ( x. , G ) ` ( n + 1 ) ) = ( 1 / ( seq M ( x. , F ) ` ( n + 1 ) ) ) ) ) |
| 21 | 20 | imbi2d | |- ( m = ( n + 1 ) -> ( ( ph -> ( seq M ( x. , G ) ` m ) = ( 1 / ( seq M ( x. , F ) ` m ) ) ) <-> ( ph -> ( seq M ( x. , G ) ` ( n + 1 ) ) = ( 1 / ( seq M ( x. , F ) ` ( n + 1 ) ) ) ) ) ) |
| 22 | fveq2 | |- ( m = N -> ( seq M ( x. , G ) ` m ) = ( seq M ( x. , G ) ` N ) ) |
|
| 23 | fveq2 | |- ( m = N -> ( seq M ( x. , F ) ` m ) = ( seq M ( x. , F ) ` N ) ) |
|
| 24 | 23 | oveq2d | |- ( m = N -> ( 1 / ( seq M ( x. , F ) ` m ) ) = ( 1 / ( seq M ( x. , F ) ` N ) ) ) |
| 25 | 22 24 | eqeq12d | |- ( m = N -> ( ( seq M ( x. , G ) ` m ) = ( 1 / ( seq M ( x. , F ) ` m ) ) <-> ( seq M ( x. , G ) ` N ) = ( 1 / ( seq M ( x. , F ) ` N ) ) ) ) |
| 26 | 25 | imbi2d | |- ( m = N -> ( ( ph -> ( seq M ( x. , G ) ` m ) = ( 1 / ( seq M ( x. , F ) ` m ) ) ) <-> ( ph -> ( seq M ( x. , G ) ` N ) = ( 1 / ( seq M ( x. , F ) ` N ) ) ) ) ) |
| 27 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 28 | 1 27 | syl | |- ( ph -> M e. ( M ... N ) ) |
| 29 | fveq2 | |- ( k = M -> ( G ` k ) = ( G ` M ) ) |
|
| 30 | fveq2 | |- ( k = M -> ( F ` k ) = ( F ` M ) ) |
|
| 31 | 30 | oveq2d | |- ( k = M -> ( 1 / ( F ` k ) ) = ( 1 / ( F ` M ) ) ) |
| 32 | 29 31 | eqeq12d | |- ( k = M -> ( ( G ` k ) = ( 1 / ( F ` k ) ) <-> ( G ` M ) = ( 1 / ( F ` M ) ) ) ) |
| 33 | 32 | imbi2d | |- ( k = M -> ( ( ph -> ( G ` k ) = ( 1 / ( F ` k ) ) ) <-> ( ph -> ( G ` M ) = ( 1 / ( F ` M ) ) ) ) ) |
| 34 | 4 | expcom | |- ( k e. ( M ... N ) -> ( ph -> ( G ` k ) = ( 1 / ( F ` k ) ) ) ) |
| 35 | 33 34 | vtoclga | |- ( M e. ( M ... N ) -> ( ph -> ( G ` M ) = ( 1 / ( F ` M ) ) ) ) |
| 36 | 28 35 | mpcom | |- ( ph -> ( G ` M ) = ( 1 / ( F ` M ) ) ) |
| 37 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 38 | 1 37 | syl | |- ( ph -> M e. ZZ ) |
| 39 | seq1 | |- ( M e. ZZ -> ( seq M ( x. , G ) ` M ) = ( G ` M ) ) |
|
| 40 | 38 39 | syl | |- ( ph -> ( seq M ( x. , G ) ` M ) = ( G ` M ) ) |
| 41 | seq1 | |- ( M e. ZZ -> ( seq M ( x. , F ) ` M ) = ( F ` M ) ) |
|
| 42 | 38 41 | syl | |- ( ph -> ( seq M ( x. , F ) ` M ) = ( F ` M ) ) |
| 43 | 42 | oveq2d | |- ( ph -> ( 1 / ( seq M ( x. , F ) ` M ) ) = ( 1 / ( F ` M ) ) ) |
| 44 | 36 40 43 | 3eqtr4d | |- ( ph -> ( seq M ( x. , G ) ` M ) = ( 1 / ( seq M ( x. , F ) ` M ) ) ) |
| 45 | 44 | a1i | |- ( N e. ( ZZ>= ` M ) -> ( ph -> ( seq M ( x. , G ) ` M ) = ( 1 / ( seq M ( x. , F ) ` M ) ) ) ) |
| 46 | oveq1 | |- ( ( seq M ( x. , G ) ` n ) = ( 1 / ( seq M ( x. , F ) ` n ) ) -> ( ( seq M ( x. , G ) ` n ) x. ( G ` ( n + 1 ) ) ) = ( ( 1 / ( seq M ( x. , F ) ` n ) ) x. ( G ` ( n + 1 ) ) ) ) |
|
| 47 | 46 | 3ad2ant3 | |- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , G ) ` n ) = ( 1 / ( seq M ( x. , F ) ` n ) ) ) -> ( ( seq M ( x. , G ) ` n ) x. ( G ` ( n + 1 ) ) ) = ( ( 1 / ( seq M ( x. , F ) ` n ) ) x. ( G ` ( n + 1 ) ) ) ) |
| 48 | fzofzp1 | |- ( n e. ( M ..^ N ) -> ( n + 1 ) e. ( M ... N ) ) |
|
| 49 | fveq2 | |- ( k = ( n + 1 ) -> ( G ` k ) = ( G ` ( n + 1 ) ) ) |
|
| 50 | fveq2 | |- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
|
| 51 | 50 | oveq2d | |- ( k = ( n + 1 ) -> ( 1 / ( F ` k ) ) = ( 1 / ( F ` ( n + 1 ) ) ) ) |
| 52 | 49 51 | eqeq12d | |- ( k = ( n + 1 ) -> ( ( G ` k ) = ( 1 / ( F ` k ) ) <-> ( G ` ( n + 1 ) ) = ( 1 / ( F ` ( n + 1 ) ) ) ) ) |
| 53 | 52 | imbi2d | |- ( k = ( n + 1 ) -> ( ( ph -> ( G ` k ) = ( 1 / ( F ` k ) ) ) <-> ( ph -> ( G ` ( n + 1 ) ) = ( 1 / ( F ` ( n + 1 ) ) ) ) ) ) |
| 54 | 53 34 | vtoclga | |- ( ( n + 1 ) e. ( M ... N ) -> ( ph -> ( G ` ( n + 1 ) ) = ( 1 / ( F ` ( n + 1 ) ) ) ) ) |
| 55 | 48 54 | syl | |- ( n e. ( M ..^ N ) -> ( ph -> ( G ` ( n + 1 ) ) = ( 1 / ( F ` ( n + 1 ) ) ) ) ) |
| 56 | 55 | impcom | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( G ` ( n + 1 ) ) = ( 1 / ( F ` ( n + 1 ) ) ) ) |
| 57 | 56 | oveq2d | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( 1 / ( seq M ( x. , F ) ` n ) ) x. ( G ` ( n + 1 ) ) ) = ( ( 1 / ( seq M ( x. , F ) ` n ) ) x. ( 1 / ( F ` ( n + 1 ) ) ) ) ) |
| 58 | 1cnd | |- ( ( ph /\ n e. ( M ..^ N ) ) -> 1 e. CC ) |
|
| 59 | elfzouz | |- ( n e. ( M ..^ N ) -> n e. ( ZZ>= ` M ) ) |
|
| 60 | 59 | adantl | |- ( ( ph /\ n e. ( M ..^ N ) ) -> n e. ( ZZ>= ` M ) ) |
| 61 | elfzouz2 | |- ( n e. ( M ..^ N ) -> N e. ( ZZ>= ` n ) ) |
|
| 62 | fzss2 | |- ( N e. ( ZZ>= ` n ) -> ( M ... n ) C_ ( M ... N ) ) |
|
| 63 | 61 62 | syl | |- ( n e. ( M ..^ N ) -> ( M ... n ) C_ ( M ... N ) ) |
| 64 | 63 | sselda | |- ( ( n e. ( M ..^ N ) /\ k e. ( M ... n ) ) -> k e. ( M ... N ) ) |
| 65 | 64 2 | sylan2 | |- ( ( ph /\ ( n e. ( M ..^ N ) /\ k e. ( M ... n ) ) ) -> ( F ` k ) e. CC ) |
| 66 | 65 | anassrs | |- ( ( ( ph /\ n e. ( M ..^ N ) ) /\ k e. ( M ... n ) ) -> ( F ` k ) e. CC ) |
| 67 | mulcl | |- ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) |
|
| 68 | 67 | adantl | |- ( ( ( ph /\ n e. ( M ..^ N ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
| 69 | 60 66 68 | seqcl | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( seq M ( x. , F ) ` n ) e. CC ) |
| 70 | 50 | eleq1d | |- ( k = ( n + 1 ) -> ( ( F ` k ) e. CC <-> ( F ` ( n + 1 ) ) e. CC ) ) |
| 71 | 70 | imbi2d | |- ( k = ( n + 1 ) -> ( ( ph -> ( F ` k ) e. CC ) <-> ( ph -> ( F ` ( n + 1 ) ) e. CC ) ) ) |
| 72 | 2 | expcom | |- ( k e. ( M ... N ) -> ( ph -> ( F ` k ) e. CC ) ) |
| 73 | 71 72 | vtoclga | |- ( ( n + 1 ) e. ( M ... N ) -> ( ph -> ( F ` ( n + 1 ) ) e. CC ) ) |
| 74 | 48 73 | syl | |- ( n e. ( M ..^ N ) -> ( ph -> ( F ` ( n + 1 ) ) e. CC ) ) |
| 75 | 74 | impcom | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( F ` ( n + 1 ) ) e. CC ) |
| 76 | 64 3 | sylan2 | |- ( ( ph /\ ( n e. ( M ..^ N ) /\ k e. ( M ... n ) ) ) -> ( F ` k ) =/= 0 ) |
| 77 | 76 | anassrs | |- ( ( ( ph /\ n e. ( M ..^ N ) ) /\ k e. ( M ... n ) ) -> ( F ` k ) =/= 0 ) |
| 78 | 60 66 77 | prodfn0 | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( seq M ( x. , F ) ` n ) =/= 0 ) |
| 79 | 50 | neeq1d | |- ( k = ( n + 1 ) -> ( ( F ` k ) =/= 0 <-> ( F ` ( n + 1 ) ) =/= 0 ) ) |
| 80 | 79 | imbi2d | |- ( k = ( n + 1 ) -> ( ( ph -> ( F ` k ) =/= 0 ) <-> ( ph -> ( F ` ( n + 1 ) ) =/= 0 ) ) ) |
| 81 | 3 | expcom | |- ( k e. ( M ... N ) -> ( ph -> ( F ` k ) =/= 0 ) ) |
| 82 | 80 81 | vtoclga | |- ( ( n + 1 ) e. ( M ... N ) -> ( ph -> ( F ` ( n + 1 ) ) =/= 0 ) ) |
| 83 | 48 82 | syl | |- ( n e. ( M ..^ N ) -> ( ph -> ( F ` ( n + 1 ) ) =/= 0 ) ) |
| 84 | 83 | impcom | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( F ` ( n + 1 ) ) =/= 0 ) |
| 85 | 58 69 58 75 78 84 | divmuldivd | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( 1 / ( seq M ( x. , F ) ` n ) ) x. ( 1 / ( F ` ( n + 1 ) ) ) ) = ( ( 1 x. 1 ) / ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
| 86 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 87 | 86 | oveq1i | |- ( ( 1 x. 1 ) / ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) = ( 1 / ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
| 88 | 85 87 | eqtrdi | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( 1 / ( seq M ( x. , F ) ` n ) ) x. ( 1 / ( F ` ( n + 1 ) ) ) ) = ( 1 / ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
| 89 | 57 88 | eqtrd | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( 1 / ( seq M ( x. , F ) ` n ) ) x. ( G ` ( n + 1 ) ) ) = ( 1 / ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
| 90 | 89 | 3adant3 | |- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , G ) ` n ) = ( 1 / ( seq M ( x. , F ) ` n ) ) ) -> ( ( 1 / ( seq M ( x. , F ) ` n ) ) x. ( G ` ( n + 1 ) ) ) = ( 1 / ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
| 91 | 47 90 | eqtrd | |- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , G ) ` n ) = ( 1 / ( seq M ( x. , F ) ` n ) ) ) -> ( ( seq M ( x. , G ) ` n ) x. ( G ` ( n + 1 ) ) ) = ( 1 / ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
| 92 | seqp1 | |- ( n e. ( ZZ>= ` M ) -> ( seq M ( x. , G ) ` ( n + 1 ) ) = ( ( seq M ( x. , G ) ` n ) x. ( G ` ( n + 1 ) ) ) ) |
|
| 93 | 59 92 | syl | |- ( n e. ( M ..^ N ) -> ( seq M ( x. , G ) ` ( n + 1 ) ) = ( ( seq M ( x. , G ) ` n ) x. ( G ` ( n + 1 ) ) ) ) |
| 94 | 93 | 3ad2ant2 | |- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , G ) ` n ) = ( 1 / ( seq M ( x. , F ) ` n ) ) ) -> ( seq M ( x. , G ) ` ( n + 1 ) ) = ( ( seq M ( x. , G ) ` n ) x. ( G ` ( n + 1 ) ) ) ) |
| 95 | seqp1 | |- ( n e. ( ZZ>= ` M ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
|
| 96 | 59 95 | syl | |- ( n e. ( M ..^ N ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
| 97 | 96 | oveq2d | |- ( n e. ( M ..^ N ) -> ( 1 / ( seq M ( x. , F ) ` ( n + 1 ) ) ) = ( 1 / ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
| 98 | 97 | 3ad2ant2 | |- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , G ) ` n ) = ( 1 / ( seq M ( x. , F ) ` n ) ) ) -> ( 1 / ( seq M ( x. , F ) ` ( n + 1 ) ) ) = ( 1 / ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
| 99 | 91 94 98 | 3eqtr4d | |- ( ( ph /\ n e. ( M ..^ N ) /\ ( seq M ( x. , G ) ` n ) = ( 1 / ( seq M ( x. , F ) ` n ) ) ) -> ( seq M ( x. , G ) ` ( n + 1 ) ) = ( 1 / ( seq M ( x. , F ) ` ( n + 1 ) ) ) ) |
| 100 | 99 | 3exp | |- ( ph -> ( n e. ( M ..^ N ) -> ( ( seq M ( x. , G ) ` n ) = ( 1 / ( seq M ( x. , F ) ` n ) ) -> ( seq M ( x. , G ) ` ( n + 1 ) ) = ( 1 / ( seq M ( x. , F ) ` ( n + 1 ) ) ) ) ) ) |
| 101 | 100 | com12 | |- ( n e. ( M ..^ N ) -> ( ph -> ( ( seq M ( x. , G ) ` n ) = ( 1 / ( seq M ( x. , F ) ` n ) ) -> ( seq M ( x. , G ) ` ( n + 1 ) ) = ( 1 / ( seq M ( x. , F ) ` ( n + 1 ) ) ) ) ) ) |
| 102 | 101 | a2d | |- ( n e. ( M ..^ N ) -> ( ( ph -> ( seq M ( x. , G ) ` n ) = ( 1 / ( seq M ( x. , F ) ` n ) ) ) -> ( ph -> ( seq M ( x. , G ) ` ( n + 1 ) ) = ( 1 / ( seq M ( x. , F ) ` ( n + 1 ) ) ) ) ) ) |
| 103 | 11 16 21 26 45 102 | fzind2 | |- ( N e. ( M ... N ) -> ( ph -> ( seq M ( x. , G ) ` N ) = ( 1 / ( seq M ( x. , F ) ` N ) ) ) ) |
| 104 | 6 103 | mpcom | |- ( ph -> ( seq M ( x. , G ) ` N ) = ( 1 / ( seq M ( x. , F ) ` N ) ) ) |