This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient of two infinite products. (Contributed by Scott Fenton, 15-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodfdiv.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| prodfdiv.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| prodfdiv.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | ||
| prodfdiv.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ≠ 0 ) | ||
| prodfdiv.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) / ( 𝐺 ‘ 𝑘 ) ) ) | ||
| Assertion | prodfdiv | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) / ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodfdiv.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | prodfdiv.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 3 | prodfdiv.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | |
| 4 | prodfdiv.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ≠ 0 ) | |
| 5 | prodfdiv.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) / ( 𝐺 ‘ 𝑘 ) ) ) | |
| 6 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 1 / ( 𝐺 ‘ 𝑛 ) ) = ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) |
| 8 | eqid | ⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 1 / ( 𝐺 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 1 / ( 𝐺 ‘ 𝑛 ) ) ) | |
| 9 | ovex | ⊢ ( 1 / ( 𝐺 ‘ 𝑘 ) ) ∈ V | |
| 10 | 7 8 9 | fvmpt | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 1 / ( 𝐺 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 1 / ( 𝐺 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) |
| 12 | 1 3 4 11 | prodfrec | ⊢ ( 𝜑 → ( seq 𝑀 ( · , ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 1 / ( 𝐺 ‘ 𝑛 ) ) ) ) ‘ 𝑁 ) = ( 1 / ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑁 ) ) ) |
| 13 | 12 | oveq2d | ⊢ ( 𝜑 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq 𝑀 ( · , ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 1 / ( 𝐺 ‘ 𝑛 ) ) ) ) ‘ 𝑁 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( 1 / ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑁 ) ) ) ) |
| 14 | eleq1w | ⊢ ( 𝑘 = 𝑛 → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 15 | 14 | anbi2d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) ) |
| 16 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑛 ) ) | |
| 17 | 16 | eleq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐺 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐺 ‘ 𝑛 ) ∈ ℂ ) ) |
| 18 | 15 17 | imbi12d | ⊢ ( 𝑘 = 𝑛 → ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑛 ) ∈ ℂ ) ) ) |
| 19 | 18 3 | chvarvv | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑛 ) ∈ ℂ ) |
| 20 | 16 | neeq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐺 ‘ 𝑘 ) ≠ 0 ↔ ( 𝐺 ‘ 𝑛 ) ≠ 0 ) ) |
| 21 | 15 20 | imbi12d | ⊢ ( 𝑘 = 𝑛 → ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ≠ 0 ) ↔ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑛 ) ≠ 0 ) ) ) |
| 22 | 21 4 | chvarvv | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑛 ) ≠ 0 ) |
| 23 | 19 22 | reccld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( 1 / ( 𝐺 ‘ 𝑛 ) ) ∈ ℂ ) |
| 24 | 23 | fmpttd | ⊢ ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 1 / ( 𝐺 ‘ 𝑛 ) ) ) : ( 𝑀 ... 𝑁 ) ⟶ ℂ ) |
| 25 | 24 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 1 / ( 𝐺 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 26 | 2 3 4 | divrecd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑘 ) / ( 𝐺 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) · ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 27 | 11 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑘 ) · ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 1 / ( 𝐺 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) · ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 28 | 26 5 27 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) · ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 1 / ( 𝐺 ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 29 | 1 2 25 28 | prodfmul | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( seq 𝑀 ( · , ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 1 / ( 𝐺 ‘ 𝑛 ) ) ) ) ‘ 𝑁 ) ) ) |
| 30 | mulcl | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · 𝑥 ) ∈ ℂ ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑘 · 𝑥 ) ∈ ℂ ) |
| 32 | 1 2 31 | seqcl | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
| 33 | 1 3 31 | seqcl | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑁 ) ∈ ℂ ) |
| 34 | 1 3 4 | prodfn0 | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑁 ) ≠ 0 ) |
| 35 | 32 33 34 | divrecd | ⊢ ( 𝜑 → ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) / ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑁 ) ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) · ( 1 / ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑁 ) ) ) ) |
| 36 | 13 29 35 | 3eqtr4d | ⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) / ( seq 𝑀 ( · , 𝐺 ) ‘ 𝑁 ) ) ) |